• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectral factor model for time series learning

Alexander Miranda, Abhilash 24 November 2011 (has links)
Today's computerized processes generate<p>massive amounts of streaming data.<p>In many applications, data is collected for modeling the processes. The process model is hoped to drive objectives such as decision support, data visualization, business intelligence, automation and control, pattern recognition and classification, etc. However, we face significant challenges in data-driven modeling of processes. Apart from the errors, outliers and noise in the data measurements, the main challenge is due to a large dimensionality, which is the number of variables each data sample measures. The samples often form a long temporal sequence called a multivariate time series where any one sample is influenced by the others.<p>We wish to build a model that will ensure robust generation, reviewing, and representation of new multivariate time series that are consistent with the underlying process.<p><p>In this thesis, we adopt a modeling framework to extract characteristics from multivariate time series that correspond to dynamic variation-covariation common to the measured variables across all the samples. Those characteristics of a multivariate time series are named its 'commonalities' and a suitable measure for them is defined. What makes the multivariate time series model versatile is the assumption regarding the existence of a latent time series of known or presumed characteristics and much lower dimensionality than the measured time series; the result is the well-known 'dynamic factor model'.<p>Original variants of existing methods for estimating the dynamic factor model are developed: The estimation is performed using the frequency-domain equivalent of the dynamic factor model named the 'spectral factor model'. To estimate the spectral factor model, ideas are sought from the asymptotic theory of spectral estimates. This theory is used to attain a probabilistic formulation, which provides maximum likelihood estimates for the spectral factor model parameters. Then, maximum likelihood parameters are developed with all the analysis entirely in the spectral-domain such that the dynamically transformed latent time series inherits the commonalities maximally.<p><p>The main contribution of this thesis is a learning framework using the spectral factor model. We term learning as the ability of a computational model of a process to robustly characterize the data the process generates for purposes of pattern matching, classification and prediction. Hence, the spectral factor model could be claimed to have learned a multivariate time series if the latent time series when dynamically transformed extracts the commonalities reliably and maximally. The spectral factor model will be used for mainly two multivariate time series learning applications: First, real-world streaming datasets obtained from various processes are to be classified; in this exercise, human brain magnetoencephalography signals obtained during various cognitive and physical tasks are classified. Second, the commonalities are put to test by asking for reliable prediction of a multivariate time series given its past evolution; share prices in a portfolio are forecasted as part of this challenge.<p><p>For both spectral factor modeling and learning, an analytical solution as well as an iterative solution are developed. While the analytical solution is based on low-rank approximation of the spectral density function, the iterative solution is based on the expectation-maximization algorithm. For the human brain signal classification exercise, a strategy for comparing similarities between the commonalities for various classes of multivariate time series processes is developed. For the share price prediction problem, a vector autoregressive model whose parameters are enriched with the maximum likelihood commonalities is designed. In both these learning problems, the spectral factor model gives commendable performance with respect to competing approaches.<p><p>Les processus informatisés actuels génèrent des quantités massives de flux de données. Dans nombre d'applications, ces flux de données sont collectées en vue de modéliser les processus. Les modèles de processus obtenus ont pour but la réalisation d'objectifs tels que l'aide à la décision, la visualisation de données, l'informatique décisionnelle, l'automatisation et le contrôle, la reconnaissance de formes et la classification, etc. La modélisation de processus sur la base de données implique cependant de faire face à d’importants défis. Outre les erreurs, les données aberrantes et le bruit, le principal défi provient de la large dimensionnalité, i.e. du nombre de variables dans chaque échantillon de données mesurées. Les échantillons forment souvent une longue séquence temporelle appelée série temporelle multivariée, où chaque échantillon est influencé par les autres. Notre objectif est de construire un modèle robuste qui garantisse la génération, la révision et la représentation de nouvelles séries temporelles multivariées cohérentes avec le processus sous-jacent.<p><p>Dans cette thèse, nous adoptons un cadre de modélisation capable d’extraire, à partir de séries temporelles multivariées, des caractéristiques correspondant à des variations - covariations dynamiques communes aux variables mesurées dans tous les échantillons. Ces caractéristiques sont appelées «points communs» et une mesure qui leur est appropriée est définie. Ce qui rend le modèle de séries temporelles multivariées polyvalent est l'hypothèse relative à l'existence de séries temporelles latentes de caractéristiques connues ou présumées et de dimensionnalité beaucoup plus faible que les séries temporelles mesurées; le résultat est le bien connu «modèle factoriel dynamique». Des variantes originales de méthodes existantes pour estimer le modèle factoriel dynamique sont développées :l'estimation est réalisée en utilisant l'équivalent du modèle factoriel dynamique au niveau du domaine de fréquence, désigné comme le «modèle factoriel spectral». Pour estimer le modèle factoriel spectral, nous nous basons sur des idées relatives à la théorie des estimations spectrales. Cette théorie est utilisée pour aboutir à une formulation probabiliste, qui fournit des estimations de probabilité maximale pour les paramètres du modèle factoriel spectral. Des paramètres de probabilité maximale sont alors développés, en plaçant notre analyse entièrement dans le domaine spectral, de façon à ce que les séries temporelles latentes transformées dynamiquement héritent au maximum des points communs.<p><p>La principale contribution de cette thèse consiste en un cadre d'apprentissage utilisant le modèle factoriel spectral. Nous désignons par apprentissage la capacité d'un modèle de processus à caractériser de façon robuste les données générées par le processus à des fins de filtrage par motif, classification et prédiction. Dans ce contexte, le modèle factoriel spectral est considéré comme ayant appris une série temporelle multivariée si la série temporelle latente, une fois dynamiquement transformée, permet d'extraire les points communs de façon fiable et maximale. Le modèle factoriel spectral sera utilisé principalement pour deux applications d'apprentissage de séries multivariées :en premier lieu, des ensembles de données sous forme de flux venant de différents processus du monde réel doivent être classifiés; lors de cet exercice, la classification porte sur des signaux magnétoencéphalographiques obtenus chez l'homme au cours de différentes tâches physiques et cognitives; en second lieu, les points communs obtenus sont testés en demandant une prédiction fiable d'une série temporelle multivariée étant donnée l'évolution passée; les prix d'un portefeuille d'actions sont prédits dans le cadre de ce défi.<p><p>À la fois pour la modélisation et pour l'apprentissage factoriel spectral, une solution analytique aussi bien qu'une solution itérative sont développées. Tandis que la solution analytique est basée sur une approximation de rang inférieur de la fonction de densité spectrale, la solution itérative est basée, quant à elle, sur l'algorithme de maximisation des attentes. Pour l'exercice de classification des signaux magnétoencéphalographiques humains, une stratégie de comparaison des similitudes entre les points communs des différentes classes de processus de séries temporelles multivariées est développée. Pour le problème de prédiction des prix des actions, un modèle vectoriel autorégressif dont les paramètres sont enrichis avec les points communs de probabilité maximale est conçu. Dans ces deux problèmes d’apprentissage, le modèle factoriel spectral atteint des performances louables en regard d’approches concurrentes. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
2

Machine learning strategies for multi-step-ahead time series forecasting

Ben Taieb, Souhaib 08 October 2014 (has links)
How much electricity is going to be consumed for the next 24 hours? What will be the temperature for the next three days? What will be the number of sales of a certain product for the next few months? Answering these questions often requires forecasting several future observations from a given sequence of historical observations, called a time series. <p><p>Historically, time series forecasting has been mainly studied in econometrics and statistics. In the last two decades, machine learning, a field that is concerned with the development of algorithms that can automatically learn from data, has become one of the most active areas of predictive modeling research. This success is largely due to the superior performance of machine learning prediction algorithms in many different applications as diverse as natural language processing, speech recognition and spam detection. However, there has been very little research at the intersection of time series forecasting and machine learning.<p><p>The goal of this dissertation is to narrow this gap by addressing the problem of multi-step-ahead time series forecasting from the perspective of machine learning. To that end, we propose a series of forecasting strategies based on machine learning algorithms.<p><p>Multi-step-ahead forecasts can be produced recursively by iterating a one-step-ahead model, or directly using a specific model for each horizon. As a first contribution, we conduct an in-depth study to compare recursive and direct forecasts generated with different learning algorithms for different data generating processes. More precisely, we decompose the multi-step mean squared forecast errors into the bias and variance components, and analyze their behavior over the forecast horizon for different time series lengths. The results and observations made in this study then guide us for the development of new forecasting strategies.<p><p>In particular, we find that choosing between recursive and direct forecasts is not an easy task since it involves a trade-off between bias and estimation variance that depends on many interacting factors, including the learning model, the underlying data generating process, the time series length and the forecast horizon. As a second contribution, we develop multi-stage forecasting strategies that do not treat the recursive and direct strategies as competitors, but seek to combine their best properties. More precisely, the multi-stage strategies generate recursive linear forecasts, and then adjust these forecasts by modeling the multi-step forecast residuals with direct nonlinear models at each horizon, called rectification models. We propose a first multi-stage strategy, that we called the rectify strategy, which estimates the rectification models using the nearest neighbors model. However, because recursive linear forecasts often need small adjustments with real-world time series, we also consider a second multi-stage strategy, called the boost strategy, that estimates the rectification models using gradient boosting algorithms that use so-called weak learners.<p><p>Generating multi-step forecasts using a different model at each horizon provides a large modeling flexibility. However, selecting these models independently can lead to irregularities in the forecasts that can contribute to increase the forecast variance. The problem is exacerbated with nonlinear machine learning models estimated from short time series. To address this issue, and as a third contribution, we introduce and analyze multi-horizon forecasting strategies that exploit the information contained in other horizons when learning the model for each horizon. In particular, to select the lag order and the hyperparameters of each model, multi-horizon strategies minimize forecast errors over multiple horizons rather than just the horizon of interest.<p><p>We compare all the proposed strategies with both the recursive and direct strategies. We first apply a bias and variance study, then we evaluate the different strategies using real-world time series from two past forecasting competitions. For the rectify strategy, in addition to avoiding the choice between recursive and direct forecasts, the results demonstrate that it has better, or at least has close performance to, the best of the recursive and direct forecasts in different settings. For the multi-horizon strategies, the results emphasize the decrease in variance compared to single-horizon strategies, especially with linear or weakly nonlinear data generating processes. Overall, we found that the accuracy of multi-step-ahead forecasts based on machine learning algorithms can be significantly improved if an appropriate forecasting strategy is used to select the model parameters and to generate the forecasts.<p><p>Lastly, as a fourth contribution, we have participated in the Load Forecasting track of the Global Energy Forecasting Competition 2012. The competition involved a hierarchical load forecasting problem where we were required to backcast and forecast hourly loads for a US utility with twenty geographical zones. Our team, TinTin, ranked fifth out of 105 participating teams, and we have been awarded an IEEE Power & Energy Society award.<p> / Doctorat en sciences, Spécialisation Informatique / info:eu-repo/semantics/nonPublished

Page generated in 0.1155 seconds