• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Previsão de séries temporais usando séries exógenas e combinação de redes neurais aplicada ao mercado financeiro

Christovam de Amorim Neto, Manoel 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T15:56:23Z (GMT). No. of bitstreams: 2 arquivo2920_1.pdf: 2753004 bytes, checksum: d9cabbcda1b022b793399cc38a9d033c (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2008 / A previsão de séries temporais tem sido usada em diversos problemas do mundo real, tais como: meteorologia, previsão de carga em redes de computadores, análise de mercado, entre outras, com o objetivo de minimizar riscos, auxiliar no planejamento e na tomada de decisões. Nesta dissertação, as séries temporais são analisadas para realizar previsões de cotações de ações do mercado financeiro e, para tanto, uma metodologia baseada no uso de séries exógenas e de combinação de classificadores é proposta. As principais contribuições do presente trabalho são: i) utilização de séries exógenas como variáveis de entrada para o classificador a fim de capturar informações externas que influenciam na série a ser prevista; ii) utilização de combinação de classificadores, em especial, combinação de Redes Neurais do tipo MLP (Multi-Layer Perceptron); e, iii) concepção de uma nova medida de desempenho SLG (Sum of Loses and Gains), que é mais aderente na área de investimentos. Além disso, foram propostas diferentes abordagens para pré-processar os dados. Os estudos experimentais foram realizados utilizando a série temporal correspondente à ação preferencial da Petrobras (PETR4). Os resultados mostraram que o modelo proposto superou os modelos tradicionais, conseguindo prever a série com maior precisão e relevância para os investidores

Page generated in 0.0335 seconds