• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthese de nucleosides en serie carbocyclique à visée antivirale / Synthesis of nucleosides in carbocyclic series as potential antiviral agents

Hamon, Nadège 09 December 2010 (has links)
Les analogues nucléosidiques constituent une famille importante d'agents thérapeutiques dans le traitement de maladies d'origine virale. Parmi ces composés, les nucléosides carbocycliques possèdent des propriétés biologiques intéressantes. Le premier chapitre de cette thèse est consacrée à la famille des neplanocines qui sont des carbonucleosides naturels. Nous avons détaillé l'interaction de ces composés avec leur principale cible, la S-adénosylhomocystéine hydrolase, ainsi que les différentes approches de synthèses de ces carbonucléosides et de leurs énantioméres avant de passer en revue leurs activités biologiques. Nous avons présenté dans le deuxième chapitre la première synthèse énantiosélective de la (éD)-néplanocine B. Le troisième chapitre est quant à lui axé sur la mise au point d'une synthèse de 3 '-halo-5'-norcarbonucléosides phosphonates ainsi qu’à l'évaluation de leurs activités antivirales. / Nucleosides analogues constitute an important family of therapeutic agents in the treatment of viral diseases. Among these compounds, carbocyclic nucleosides have interesting biological properties. The first chapter of this thesis is dedicated to a family of natural carbonucleosides, the neplanocins. We have presented their mode of action against S-adenosylhomocysteine hydrolase, as well as various syntheses of natural neplanocins and their enantiomers before reviewing their biological activities. In the second chapter, we described the first enantioselective synthesis of (¨D)-neplanocine B. The third chapter is devoted to the development of the synthesis of 3 '-halo-5¡¯-norcarbonucleosides phosphonates as well as the evaluation of their antiviral activities.
2

Characterization of the Substrate Specificity and Catalytic Mechanism of 5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase

Siu, Karen Ka Wing 17 February 2011 (has links)
Methionine is essential for proper functioning of cellular processes such as protein synthesis, transmethylation and polyamine synthesis. Efficient recycling of methionine is important because of its limited bioavailability and metabolically expensive de novo synthesis. Further, cellular accretion of the nucleoside metabolites of the methionine salvage pathway compromises polyamine biosynthesis, transmethylation reactions and quorum sensing pathways, all critical reactions in cellular metabolism. 5’-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a key component of the methionine salvage pathway of plants and many bacterial species, including Escherichia coli, Enterococcus faecalis, Salmonella typhimerium, Haemophilus influenza and Streptococcus pneumoniae. In bacteria, this enzyme displays dual-substrate specificity for two methionine metabolites, 5’-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH), and catalyzes the irreversible cleavage of the glycosidic bond to form adenine and the corresponding thioribose products, methylthioribose (MTR) and S-ribosylhomocysteine (SRH), respectively. In plants, MTAN is highly specific towards MTA and shows 0-16 % activity towards SAH. Plants rely on SAH hydrolase to metabolize SAH. Mammals do not have the nucleosidase enzyme and MTA is metabolized by MTA phosphorylase (MTAP). Like plants, mammals utilize SAH hydrolase to degrade SAH. Because MTAN is required for viability in multiple bacterial species and is not found in humans, it has been identified as a target for novel antibiotic development. This thesis describes the structural and functional characterization of bacterial and plant MTANs, with the aim of better understanding the molecular determinants of substrate specificity and the catalytic mechanism of this enzyme. The catalytic activities of representative plant MTANs from Arabidopsis thaliana, AtMTAN1 and AtMTAN2, were kinetically characterized. While AtMTAN2 shows 14 % activity towards SAH relative to MTA, AtMTAN1 is completely inactive towards SAH. As such, AtMTAN1 was selected for further examination and comparison with the bacterial MTAN from Escherichia coli (EcMTAN). The structures, dynamics and thermodynamic properties of these enzymes were analyzed by X-ray crystallography, hydrogen-exchange coupled mass spectrometry and isothermal titration calorimetry, respectively. Our studies reveal that structural differences alone do not sufficiently explain the divergence in substrate specificity, and that conformational flexibility also plays an important role in substrate selection in MTANs. MTANs from the pathogenic bacterial species, Staphylococcus aureus and Streptococcus pneumoniae, were examined kinetically and structurally. Comparison of the structures and catalytic activities of these enzymes with EcMTAN shows that the discrepancies in kinetic activities arefully explained by structural differences, as the overall structure and active sites of these bacterial MTANs are nearly identical. These experiments are in agreement with our proposal that dynamics play a significant role in catalytic activity of MTAN, and suggest that both structure and dynamics must be considered in future antibiotic design. To further our understanding on the catalytic mechanism of MTAN, the putative catalytic residues of AtMTAN1 were identified by structural comparison to EcMTAN and mutated by site-directed mutagenesis. The AtMTAN1 mutants were analyzed by circular dichroism and kinetic studies. Our results suggest that the catalytic mechanism is largely conserved between bacterial and plant MTANs, although the role of the putative catalytic acid remains to be confirmed.
3

Characterization of the Substrate Specificity and Catalytic Mechanism of 5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase

Siu, Karen Ka Wing 17 February 2011 (has links)
Methionine is essential for proper functioning of cellular processes such as protein synthesis, transmethylation and polyamine synthesis. Efficient recycling of methionine is important because of its limited bioavailability and metabolically expensive de novo synthesis. Further, cellular accretion of the nucleoside metabolites of the methionine salvage pathway compromises polyamine biosynthesis, transmethylation reactions and quorum sensing pathways, all critical reactions in cellular metabolism. 5’-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a key component of the methionine salvage pathway of plants and many bacterial species, including Escherichia coli, Enterococcus faecalis, Salmonella typhimerium, Haemophilus influenza and Streptococcus pneumoniae. In bacteria, this enzyme displays dual-substrate specificity for two methionine metabolites, 5’-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH), and catalyzes the irreversible cleavage of the glycosidic bond to form adenine and the corresponding thioribose products, methylthioribose (MTR) and S-ribosylhomocysteine (SRH), respectively. In plants, MTAN is highly specific towards MTA and shows 0-16 % activity towards SAH. Plants rely on SAH hydrolase to metabolize SAH. Mammals do not have the nucleosidase enzyme and MTA is metabolized by MTA phosphorylase (MTAP). Like plants, mammals utilize SAH hydrolase to degrade SAH. Because MTAN is required for viability in multiple bacterial species and is not found in humans, it has been identified as a target for novel antibiotic development. This thesis describes the structural and functional characterization of bacterial and plant MTANs, with the aim of better understanding the molecular determinants of substrate specificity and the catalytic mechanism of this enzyme. The catalytic activities of representative plant MTANs from Arabidopsis thaliana, AtMTAN1 and AtMTAN2, were kinetically characterized. While AtMTAN2 shows 14 % activity towards SAH relative to MTA, AtMTAN1 is completely inactive towards SAH. As such, AtMTAN1 was selected for further examination and comparison with the bacterial MTAN from Escherichia coli (EcMTAN). The structures, dynamics and thermodynamic properties of these enzymes were analyzed by X-ray crystallography, hydrogen-exchange coupled mass spectrometry and isothermal titration calorimetry, respectively. Our studies reveal that structural differences alone do not sufficiently explain the divergence in substrate specificity, and that conformational flexibility also plays an important role in substrate selection in MTANs. MTANs from the pathogenic bacterial species, Staphylococcus aureus and Streptococcus pneumoniae, were examined kinetically and structurally. Comparison of the structures and catalytic activities of these enzymes with EcMTAN shows that the discrepancies in kinetic activities arefully explained by structural differences, as the overall structure and active sites of these bacterial MTANs are nearly identical. These experiments are in agreement with our proposal that dynamics play a significant role in catalytic activity of MTAN, and suggest that both structure and dynamics must be considered in future antibiotic design. To further our understanding on the catalytic mechanism of MTAN, the putative catalytic residues of AtMTAN1 were identified by structural comparison to EcMTAN and mutated by site-directed mutagenesis. The AtMTAN1 mutants were analyzed by circular dichroism and kinetic studies. Our results suggest that the catalytic mechanism is largely conserved between bacterial and plant MTANs, although the role of the putative catalytic acid remains to be confirmed.
4

Structural Analysis of 5'-Methylthioadenosine/S-Adenosylhomocysteine Nucleosidase from Helicobacter pylori for the Purpose of Drug Development

Iacopelli, Natalie Marie 23 September 2009 (has links)
No description available.
5

Investigation of a Possible Multi-enzyme Complex Involved in Nicotine Biosynthesis in Roots of Tobacco (Nicotiana tabacum)

Heim, William 18 September 2003 (has links)
N-methylputrescine oxidase (MPO) is a member of the diamine oxidase (DAO) class of enzymes believed to be responsible for synthesis of the alkaloid nicotine in the roots of Nicotiana tabacum (Mizusaki et al., 1972). A purportedly pure MPO protein from tobacco root culture extracts was used to generate immune antiserum in rabbits (McLauchlan et al., 1993). In an attempt to clone a cDNA encoding MPO, we used this antiserum to screen a tobacco cDNA expression library. Unexpectedly, two previously unreported genes with strong homology to members of a gene family encoding S-adenosylhomocysteine hydrolase (SAHH) in N. sylvestris and a gene encoding SAHH in N. tabacum were cloned instead. SAHH is an enzyme of the S-adenosylmethionine (SAM) recycling pathway, which also includes SAM synthetase (SAMS) and methionine synthase (MS). These results led to the hypothesis of a multi-enzyme complex, or metabolon, of at least one member of the nicotine biosynthesis pathway, i.e., MPO, and at least one member of the SAM recycling pathway, i.e., SAHH, during nicotine biosynthesis. Metabolons are stable noncovalent complexes in cells that ensure sufficient passage of the product of one enzyme reaction to the next enzyme in the pathway via a "channel" without equilibrating with the bulk solution (Ovádi, 1991). My research employed co-immunoprecipitation studies to determine if other SAM recycling enzymes are associated in a complex with MPO and SAHH, as well as Northern and Western blot analyses to determine if the genes encoding SAM recycling pathway enzymes are coordinately regulated during nicotine biosynthesis. Our results indicate that nicotine biosynthesis-inducing conditions result in differential mRNA accumulation patterns of the three enzymes of the SAM recycling pathway, although to different extents. However, protein levels of SAM recycling pathway members do not appear to reflect the differential mRNA accumulation patterns. We have firmly established an association of SAHH and an enzyme with DAO activity, purportedly MPO. If the enzyme is proven to be MPO, then our data would constitute the first documentation of an alkaloid metabolon. Finally, using a degenerate primer PCR approach, we have cloned a 986-bp gene fragment with homology to copper amine oxidases, the class to which MPO belongs. / Master of Science
6

Avaliação da metilação do gene TP53 e instabilidade genômica em ratos expostos a metionina e doxorrubicina / TP53 gene methylation and genomic instability in methionine and doxorubicin exposed rats

Amaral, Cátia Lira do 08 February 2010 (has links)
O estado de metilação é suscetível a mudanças quando os organismos são expostos a agentes ambientais tais como componentes dos alimentos e medicamentos. Uma dieta rica em metionina (Met) poderia modular a concentração de S-adenosilmetionina (SAM) e S-adenosilhomocisteína (SAH) e alterar o estado de metilação da região promotora de genes supressores de tumores. Tanto a hipometilação global quanto a hipermetilação de genes específicos estão envolvidas na instabilidade genômica e poderiam resultar em dano ao DNA. Este estudo avalia se a dieta suplementada com Met associada a doxorrubicina (DXR), um fármaco antitumoral que induz espécies reativas, resulta em alterações no estado de metilação da região promotora do gene TP53, na razão SAM/SAH, na concentração de glutationa (GSH) e em dano ao DNA. Quarenta ratos machos Wistar foram separados em dois grupos: dieta suplementada com Met (ração comercial acrescida de 2% Met) e dieta controle (ração comercial) por seis semanas. Cada grupo foi subdividido em dois subgrupos que receberam DXR (1mg/Kg) ou solução salina intraperitoneal na terceira e sexta semanas de tratamento. Os rins e fígado foram utilizados para isolamento do DNA, determinação da concentração de SAM, SAH e GSH, e análise da instabilidade genômica. Todos os grupos apresentaram o mesmo estado de metilação da região promotora do gene TP53, determinado pelo método de análise de restrição combinada com bissulfito (COBRA). Este fato poderia ser explicado pelo índice de metilação (razão SAM/SAH) que permaneceu inalterado, possivelmente devido a uma adaptação do ciclo da Met que manteve a concentração de SAM. A depleção de GSH não ocorreu quando DXR foi associada a dieta suplementada com Met. Portanto, a suplementação com Met manteve a concentração de GSH em ratos tratados com DXR. A dieta suplementada com Met não induziu instabilidade genômica e não alterou o dano ao DNA induzido pela DXR. Em conclusão, DXR induz depleção de GSH que é inibida pela suplementação com Met. Entretanto, a mesma suplementação não previne a instabilidade genômica induzida pela DXR. A dieta suplementada com Met aumenta a concentração de SAH renal sem alterar a concentração de SAM e GSH. Tanto a dieta suplementada quanto a DXR não induzem hipermetilação na região promotora do gene TP53. / The DNA methylation status is susceptible to changes when organisms are exposed to environmental agents such as food components and drugs. A methionine-rich (Met) diet may modulate S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) concentrations, which could change the DNA methylation status in the promoter region of tumor suppressor genes. Global hipomethylation and gene-specific hipermethylation are involved in genomic instability and it could result in DNA damage. This study intends to evaluate if a Met-rich diet associated with doxorubicin (DXR), an antitumoral drug that induces reactive species, result in changes in the methylation status of the TP53 gene promoter, in the SAM/SAH ratio, in glutathione levels (GSH) and in DNA damage. Forty male Wistar rats were separated into two groups: Met-rich diet (standard chow plus 2% Met), and control diet (standard chow) for six weeks. Each group was subdivided into another two groups that received DXR (1mg/kg) or saline intraperitoneally in the third and sixth weeks of the experiment. The kidneys and the liver were removed for DNA isolation, SAM, SAH and GSH determination, and genomic instability assay. All groups showed the same unmethylated status in the TP53 promoter according to the Combined Bisulfite Restriction Analysis (COBRA). This could be explained by the fact that the methylation index (SAM/SAH ratio) remained unchanged, possibly because of an adaptive Met pathway that maintains SAM levels. GSH depletion did not occur when DXR was associated with the Met-rich diet. As a matter of fact, the Met-rich diet improved GSH concentration in DXR-treated rats. Met-rich diet did not induce genomic instability, and it did not alter DNA damage induced by DXR. In conclusion, DXR induces GSH depletion which is inhibited by Met supplementation. However, Met-rich diet may not prevent genomic instability induced by DXR. A Met-rich diet increases SAH levels; however, it does not change GSH and SAM levels. Neither Met supplementation nor DXR induced DNA hypermethylation in the TP53 gene promoter.
7

Avaliação da metilação do gene TP53 e instabilidade genômica em ratos expostos a metionina e doxorrubicina / TP53 gene methylation and genomic instability in methionine and doxorubicin exposed rats

Cátia Lira do Amaral 08 February 2010 (has links)
O estado de metilação é suscetível a mudanças quando os organismos são expostos a agentes ambientais tais como componentes dos alimentos e medicamentos. Uma dieta rica em metionina (Met) poderia modular a concentração de S-adenosilmetionina (SAM) e S-adenosilhomocisteína (SAH) e alterar o estado de metilação da região promotora de genes supressores de tumores. Tanto a hipometilação global quanto a hipermetilação de genes específicos estão envolvidas na instabilidade genômica e poderiam resultar em dano ao DNA. Este estudo avalia se a dieta suplementada com Met associada a doxorrubicina (DXR), um fármaco antitumoral que induz espécies reativas, resulta em alterações no estado de metilação da região promotora do gene TP53, na razão SAM/SAH, na concentração de glutationa (GSH) e em dano ao DNA. Quarenta ratos machos Wistar foram separados em dois grupos: dieta suplementada com Met (ração comercial acrescida de 2% Met) e dieta controle (ração comercial) por seis semanas. Cada grupo foi subdividido em dois subgrupos que receberam DXR (1mg/Kg) ou solução salina intraperitoneal na terceira e sexta semanas de tratamento. Os rins e fígado foram utilizados para isolamento do DNA, determinação da concentração de SAM, SAH e GSH, e análise da instabilidade genômica. Todos os grupos apresentaram o mesmo estado de metilação da região promotora do gene TP53, determinado pelo método de análise de restrição combinada com bissulfito (COBRA). Este fato poderia ser explicado pelo índice de metilação (razão SAM/SAH) que permaneceu inalterado, possivelmente devido a uma adaptação do ciclo da Met que manteve a concentração de SAM. A depleção de GSH não ocorreu quando DXR foi associada a dieta suplementada com Met. Portanto, a suplementação com Met manteve a concentração de GSH em ratos tratados com DXR. A dieta suplementada com Met não induziu instabilidade genômica e não alterou o dano ao DNA induzido pela DXR. Em conclusão, DXR induz depleção de GSH que é inibida pela suplementação com Met. Entretanto, a mesma suplementação não previne a instabilidade genômica induzida pela DXR. A dieta suplementada com Met aumenta a concentração de SAH renal sem alterar a concentração de SAM e GSH. Tanto a dieta suplementada quanto a DXR não induzem hipermetilação na região promotora do gene TP53. / The DNA methylation status is susceptible to changes when organisms are exposed to environmental agents such as food components and drugs. A methionine-rich (Met) diet may modulate S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) concentrations, which could change the DNA methylation status in the promoter region of tumor suppressor genes. Global hipomethylation and gene-specific hipermethylation are involved in genomic instability and it could result in DNA damage. This study intends to evaluate if a Met-rich diet associated with doxorubicin (DXR), an antitumoral drug that induces reactive species, result in changes in the methylation status of the TP53 gene promoter, in the SAM/SAH ratio, in glutathione levels (GSH) and in DNA damage. Forty male Wistar rats were separated into two groups: Met-rich diet (standard chow plus 2% Met), and control diet (standard chow) for six weeks. Each group was subdivided into another two groups that received DXR (1mg/kg) or saline intraperitoneally in the third and sixth weeks of the experiment. The kidneys and the liver were removed for DNA isolation, SAM, SAH and GSH determination, and genomic instability assay. All groups showed the same unmethylated status in the TP53 promoter according to the Combined Bisulfite Restriction Analysis (COBRA). This could be explained by the fact that the methylation index (SAM/SAH ratio) remained unchanged, possibly because of an adaptive Met pathway that maintains SAM levels. GSH depletion did not occur when DXR was associated with the Met-rich diet. As a matter of fact, the Met-rich diet improved GSH concentration in DXR-treated rats. Met-rich diet did not induce genomic instability, and it did not alter DNA damage induced by DXR. In conclusion, DXR induces GSH depletion which is inhibited by Met supplementation. However, Met-rich diet may not prevent genomic instability induced by DXR. A Met-rich diet increases SAH levels; however, it does not change GSH and SAM levels. Neither Met supplementation nor DXR induced DNA hypermethylation in the TP53 gene promoter.
8

Investigation of Protein-Protein Interactions among Nicotine Biosynthetic Enzymes and Characterization of a Nicotine Transporter

Hildreth, Sherry B. 10 December 2009 (has links)
Alkaloids are a class of plant secondary metabolites produced in about 20% of plant families. Domesticated tobacco, Nicotiana tabacum produces nicotine as the predominant alkaloid. The biosynthesis of nicotine occurs exclusively in the roots of tobacco, yet accumulates in the leaves of tobacco where it is acts as a defense compound to deter insect herbivory. The research detailed in this dissertation addresses two aspects of nicotine physiology in tobacco: 1) an investigation of hypothesized protein-protein interactions among nicotine biosynthetic enzymes and 2) the characterization of a novel nicotine transporter. A hypothesized metabolic channel including the two nicotine biosynthetic enzymes putrescine N-methyltransferase (PMT), N-methylputrescine Oxidase (MPO) and the S-adenosylmethionine (SAM) recycling enzyme S-adenosylhomocysteine hydrolase (SAHH) has been proposed. To further explore this hypothesis, protein-protein interactions among nicotine biosynthetic enzymes PMT, MPO and SAHH were investigated using yeast two-hybrid assays and co-immunoprecipitation experiments. The yeast two-hybrid was conducted as both a directed screen to detect interactions between the hypothesized metabolic channel members and as a library screen to detect interactions between hypothesized metabolic channel members and proteins from a tobacco root cDNA library. Co-immunoprecipitation experiments were conducted using proteins produced in an in vitro transcription/ translation system and using native proteins from a tobacco root extract. The outcome of these experiments provided no further evidence of a nicotine metabolic channel and a discussion of the methods and outcomes of the experiments conducted is presented. The nicotine uptake permease, NUP1, was identified in tobacco roots and was shown to preferentially transport nicotine when expressed in Schizosaccharomyces pombe. This report presents the characterization of tobacco plants and hairy roots with diminished NUP1 transcripts created by using RNAi. The NUP1-RNAi hairy roots and plants showed a decreased level of nicotine and the hairy root cultures displayed an altered distribution of nicotine from the root to the culture medium. Additionally NUP1-GFP was used to determine that NUP1 localized to the plasma membrane of tobacco BY-2 protoplasts. Potential models for the role of NUP1 in nicotine physiology will be discussed. / Ph. D.

Page generated in 0.071 seconds