• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification Of Candidate Genes For Self-Compatibility In A Diploid Population Of Potato Derived From Parents Used In Genome Sequencing

Arnold, Brenda Elaine 03 October 2013 (has links)
Gametophytic self-incompatibility limits the ability to derive inbred lines of potato through self-pollination and is prevalent in diploid potato. Within a population of F1 hybrids between two genotypes used in potato genome sequencing, we observed fruit set on many greenhouse-grown plants. Subsequently, after controlled self-pollinations, we confirmed fruit set in 32 of 103 F1 plants. Our goal was to identify genes responsible for self-compatibility in this population and to advance selfed progeny to develop highly homozygous inbred lines. The F1 population was genotyped using a single nucleotide polymorphism (SNP) array. Polymorphic and robust SNPs were analyzed by Fisher\'s Exact Test to identify allelic states segregating with the self-compatible phenotype. Filtering 1966 SNPs to retain only those with p-values less than 0.0001 yielded 95 highly significant SNPs, with all SNPs on anchored scaffolds located on chromosome 12. Candidate genes encoding for multiple notable proteins including an S-protein homologue were identified near highly significant SNPs on the Potato Genome Browser. Seeds obtained after self-pollination of self-compatible individuals were used to advance the population for three generations. SNP chip genotyping of the S3 generation revealed entirely different SNPs segregating for self-compatibility on nine different chromosomes. Comparison of the allelic state of SNPs in the F1 and S3 generations revealed a heterozygosity reduction by 80%, with fixation of many SNPs including those surrounding the S-protein homologue. We conclude that the genes responsible for segregation of self-compatibility in the S3 generation are different from those in the F1 generation. / Master of Science
2

Genetic basis and timing of a major mating system shift in Capsella

Bachmann, J.A., Tedder, Andrew, Laenen, B., Fracassetti, M., Désamoré, A., Lafon-Placette, C., Steige, K.A., Callot, C., Marande, W., Neuffer, B., Bergès, H., Köhler, C., Castric, V., Slotte, T. 13 September 2019 (has links)
Yes / A crucial step in the transition from outcrossing to self-fertilization is the loss of genetic self-incompatibility (SI). In the Brassicaceae, SI involves the interaction of female and male speci-ficity components, encoded by the genesSRKandSCRat the self-incompatibility locus (S-lo-cus). Theory predicts thatS-linked mutations, and especially dominant mutations inSCR, arelikely to contribute to loss of SI. However, few studies have investigated the contribution ofdominant mutations to loss of SI in wild plant species. Here, we investigate the genetic basis of loss of SI in the self-fertilizing crucifer speciesCapsella orientalis, by combining genetic mapping, long-read sequencing of completeS-hap-lotypes, gene expression analyses and controlled crosses. We show that loss of SI inC. orientalisoccurred<2.6 Mya and maps as a dominant trait totheS-locus. We identify a fixed frameshift deletion in the male specificity geneSCRand con-firm loss of male SI specificity. We further identify anS-linked small RNA that is predicted tocause dominance of self-compatibility. Our results agree with predictions on the contribution of dominantS-linked mutations toloss of SI, and thus provide new insights into the molecular basis of mating system transitions. / Work at Uppsala Genome Center is funded by 550 RFI / VR and Science for Life Laboratory, Sweden. The SNP&SEQ Platform is supported by 551 the Swedish Research Council and the Knut and Alice Wallenberg Foundation. V.C. 552 acknowledges support by a grant from the European Research Council (NOVEL project, 553 grant #648321). The authors thank the French Ministère de l’Enseignement Supérieur et de la 554 Recherche, the Hauts de France Region and the European Funds for Regional Economical 555 Development for their financial support to this project. This work was supported by a grant 556 from the Swedish Research Council (grant #D0432001) and by a grant from the Science for 557 Life Laboratory, Swedish Biodiversity Program to T.S. The Swedish Biodiversity Program is 558 supported by the Knut and Alice Wallenberg Foundation.
3

Marker asistované selekce autoinkompatibilních rostlin řepky / Marker assisted selection in hybrid breeding of oil seed rape

HAVLÍČKOVÁ, Lenka January 2007 (has links)
Marker assisted selection in hybrid breeding of oil seed rape
4

Destinée des S-RNases dans les tubes polliniques lors des croisements compatibles et incompatibles

Boivin, Nicolas 08 1900 (has links)
L’auto-incompatibilité (AI) est la capacité génétiquement déterminée d’une plante fertile de rejeter son propre pollen. Chez les Solanacées l’AI dépend des éléments d’un locus fort complexe (locus S) multigénique. L’élément du locus-S exprimé dans le pistil est une ribonucléase (S-RNase) dont le rôle est de dégrader l’ARN chez le pollen self, tandis que l’élément du locus S exprimé dans le pollen est un ensemble de protéines du type F-box, qui sont normalement impliquées dans la dégradation des protéines. Cependant, comment les S-RNases self restent actives lors des croisements incompatibles et comment les S-RNases non-self sont inactivées lors des croisements compatibles ce n’est encore pas clair. Un modèle propose que les S-RNases non-self soient dégradées lors des croisements compatibles. Un autre modèle propose que toutes les S-RNases, self et non-self, soient d'abord séquestrées à l’intérieur d’une vacuole, et elles y resteraient lors des croisements compatibles. Lors de croisements incompatibles, par contre, elles seraient relâchées dans le cytoplasme, où elles pourront exercer leur action cytotoxique. Notre étude tente de répondre à ces questions. Notamment, nous cherchons à mettre en évidence la localisation vacuolaire et/ou cytoplasmique des S-RNases et leur concentration par immunolocalisation, en utilisant un anticorps ciblant la S11-RNase de Solanum chacoense et la microcopie électronique à transmission. Nos résultats montrent que la densité de marquage observée pour les S-RNases cytoplasmiques est significativement plus haute dans les tubes incompatibles que dans ceux compatibles ce qui nous indique que pour qu’un tube pollinique soit compatible il doit contenir une faible densité de S-RNase cytoplasmique. / Self-incompatibility (SI) is a widespread genetic device used by flowering plants to reject their own pollen, and thus to avoid inbreeding. This cell-cell recognition mechanism is mediated by molecular interactions between gene products expressed in the pollen and those expressed in specialized cells of the pistil. The genetic determinants of the system are produced from a highly complex multigenic S-locus with multiple S-haplotypes, although other genes outside the S-locus also contribute to the phenomenon in a non-allele specific manner. SI discriminates between self and non-self pollen, as the former will be rejected (incompatible cross), whereas the latter will be allowed to accomplish fertilization (compatible cross). In the Solanaceae (to which Solanum chacoense belongs) the pistillar determinant to SI is an extremely polymorphic stylar extracellular S-RNase, whereas the pollen determinant involves the collaborative action of several members of the F-box family (SLF or S-locus F-box). This has led to the hypothesis that during compatible crosses, ubiquitin-mediated degradation of non-self S-RNases takes place (degradation model). However, it has also been found that non-self S-RNases appear to be sequestered in the vacuole during compatible crosses (sequestration model). The objective of our study was to discriminate between these two models by using immunolocalization techniques and transmission electron microscopy. We have found that the concentration of S-RNases is significantly higher in incompatible pollen tubes than in compatible ones.
5

Destinée des S-RNases dans les tubes polliniques lors des croisements compatibles et incompatibles

Boivin, Nicolas 08 1900 (has links)
L’auto-incompatibilité (AI) est la capacité génétiquement déterminée d’une plante fertile de rejeter son propre pollen. Chez les Solanacées l’AI dépend des éléments d’un locus fort complexe (locus S) multigénique. L’élément du locus-S exprimé dans le pistil est une ribonucléase (S-RNase) dont le rôle est de dégrader l’ARN chez le pollen self, tandis que l’élément du locus S exprimé dans le pollen est un ensemble de protéines du type F-box, qui sont normalement impliquées dans la dégradation des protéines. Cependant, comment les S-RNases self restent actives lors des croisements incompatibles et comment les S-RNases non-self sont inactivées lors des croisements compatibles ce n’est encore pas clair. Un modèle propose que les S-RNases non-self soient dégradées lors des croisements compatibles. Un autre modèle propose que toutes les S-RNases, self et non-self, soient d'abord séquestrées à l’intérieur d’une vacuole, et elles y resteraient lors des croisements compatibles. Lors de croisements incompatibles, par contre, elles seraient relâchées dans le cytoplasme, où elles pourront exercer leur action cytotoxique. Notre étude tente de répondre à ces questions. Notamment, nous cherchons à mettre en évidence la localisation vacuolaire et/ou cytoplasmique des S-RNases et leur concentration par immunolocalisation, en utilisant un anticorps ciblant la S11-RNase de Solanum chacoense et la microcopie électronique à transmission. Nos résultats montrent que la densité de marquage observée pour les S-RNases cytoplasmiques est significativement plus haute dans les tubes incompatibles que dans ceux compatibles ce qui nous indique que pour qu’un tube pollinique soit compatible il doit contenir une faible densité de S-RNase cytoplasmique. / Self-incompatibility (SI) is a widespread genetic device used by flowering plants to reject their own pollen, and thus to avoid inbreeding. This cell-cell recognition mechanism is mediated by molecular interactions between gene products expressed in the pollen and those expressed in specialized cells of the pistil. The genetic determinants of the system are produced from a highly complex multigenic S-locus with multiple S-haplotypes, although other genes outside the S-locus also contribute to the phenomenon in a non-allele specific manner. SI discriminates between self and non-self pollen, as the former will be rejected (incompatible cross), whereas the latter will be allowed to accomplish fertilization (compatible cross). In the Solanaceae (to which Solanum chacoense belongs) the pistillar determinant to SI is an extremely polymorphic stylar extracellular S-RNase, whereas the pollen determinant involves the collaborative action of several members of the F-box family (SLF or S-locus F-box). This has led to the hypothesis that during compatible crosses, ubiquitin-mediated degradation of non-self S-RNases takes place (degradation model). However, it has also been found that non-self S-RNases appear to be sequestered in the vacuole during compatible crosses (sequestration model). The objective of our study was to discriminate between these two models by using immunolocalization techniques and transmission electron microscopy. We have found that the concentration of S-RNases is significantly higher in incompatible pollen tubes than in compatible ones.

Page generated in 0.0196 seconds