• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 16
  • 11
  • 7
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Integrable quantum field theories, in the bulk and with a boundary

Mattsson, Peter Aake January 2000 (has links)
In this thesis, we consider the massive field theories in 1+1 dimensions known as affine Toda quantum field theories. These have the special property that they possess an infinite number of conserved quantities, a feature which greatly simplifies their study, and makes extracting exact information about them a tractable problem. We consider these theories both in the full space (the bulk) and in the half space bounded by an impenetrable boundary at x = 0. In particular, we consider their fundamental objects: the scattering matrices in the bulk, and the reflection factors at the boundary, both of which can be found in a closed form. In Chapter 1, we provide a general introduction to the topic before going on, in Chapter 2, to consider the simplest ATFT—the sine-Gordon model—with a boundary. We begin by studying the classical limit, finding quite a clear picture of the boundary structure we can expect in the quantum case, which is introduced in Chapter 3. We obtain the bound-state structure for all integrable boundary conditions, as well as the corresponding reflection factors. This structure turns out to be much richer than had hitherto been imagined. We then consider more general ATFTs in the bulk. The sine-Gordon model is based on a(^(1))(_1), but there is an ATFT for any semi-simple Lie algebra. This underlying structure is known to show up in their S-matrices, but the path back to the parameters in the Lagrangian is still unclear. We investigate this, our main result being the discovery of a "generalised bootstrap" equation which explicitly encodes the Lie algebra into the S-matrix. This leads to a number of new S-matrix identities, as well as a generalisation of the idea that the conserved charges of the theory form an eigenvector of the Cartan matrix. Finally our results are summarised in Chapter 5, and possible directions for further study are highlighted.
12

Eigenschaften von Pilzbillards und Korrelationsfunktionen von Streumatrixelementen in Mikrowellenresonatoren

Friedrich, Thomas. Unknown Date (has links)
Techn. Universiẗat, Diss., 2007--Darmstadt.
13

Resonances in two- and three-body nuclear systems

Stott, J. O. January 2003 (has links)
Halo nuclei are formed when the last protons or neutrons are weakly bound to a tightly bound core. This allows the halo nucleons to tunnel far away from the core, resulting in a large r.m.s radius and therefore a large reaction cross section. Usually, halo nuclei possess only one bound state, the ground state, with all excited states being more or less unbound. When a nuclear potential is too weak to form a bound ground or excited state, the state can nevertheless be manifest physically as a positive energy resonance. Experimentally, low energy resonance like structures have been observed in the three-body continuum of certain halo nuclei eg. 6He → alpha + n + n. However, from a strict theoretical point of view, a resonance corresponds to a pole in the scattering amplitude at a complex energy. Halo nuclei have been successfully modelled as three-body systems in the hyper-spherical harmonic calculation scheme. Here the R-matrix method is used in solving the coupled hyperradial equations. It is critical that the long-range nature of the couplings in this system are incorporated correctly when evaluating the S-matrix. This is achieved through the use of coupled asymptotic solutions to the radial equation. These procedures have enabled a number of resonance-like S-matrix poles to be located for the 2+, 0+ and 1- spin-parity states in the low energy continuum of 6He.
14

Scattering of Charge Carriers in 2+1-Dimensional Quantum Field Theory / Spridning av laddningsbärare i 2+1-dimensionell kvantfältteori

Savinainen, David January 2023 (has links)
The aim of this thesis is to examine the hard $S$-matrix for QED and QCD, due to Hannesdottir and Schwartz [1], both recreating known results, and finding new results in lower dimensions. Electrons by themselves are not gauge invariant, and in the massless limit do not give finite $S$-matrix elements for individual processes; one needs to add together seemingly arbitrary combinations of diagrams in order to be able to calculate the scattering cross-section. One remedy is to exchange the bare electron for a dressed state, or equivalently to include the dressing in the $S$-matrix itself. This gives rise to a formalism in which one needs only consider time cuts of an individual diagram in order to find finite $S$-matrix elements. The main result of this thesis is the examination of the results which are found by Hannesdottir and Schwartz in a model system of fewer dimensions. This may be of use for toy model calculations in QCD, where 2+1-dimensional QED better models certain phenomena than does 3+1-dimensional QED.
15

Spin-polarized transport in superconducting and ferromagnetic nanostructures

Taddei, Fabio January 2000 (has links)
No description available.
16

Parton-parton scattering at two-loops

Yeomans, Maria Elena Tejeda January 2001 (has links)
We present an algorithm for the calculation of scalar and tensor one- and two-loop integrals that contribute to the virtual corrections of 2 →2 partonic scattering. First, the tensor integrals are related to scalar integrals that contain an irreducible propagator-like structure in the numerator. Then, we use Integration by Parts and Lorentz Invariance recurrence relations to build a general system of equations that enables the reduction of any scalar integral (with and without structure in the numerator) to a basis set of master integrals. Their expansions in e = 2-D/2 have already been calculated and we present a summary of the techniques that have been used to this end, as well as a compilation of the expansions we need in the different physical regions. We then apply this algorithm to the direct evaluation of the Feynman diagrams contributing to the O(α4/8) one- and two-loop matrix-elements for massless like and unlike quark-quark, quark-gluon and gluon-gluon scattering. The analytic expressions we provide are regularised in Convensional Dimensional Regularisation and renormalised in the MS scheme. Finally, we show that the structure of the infrared divergences agrees with that predicted by the application of Catani's formalism to the analysis of each partonic scattering process. The results presented in this thesis provide the complete calculation of the one- and two-loop matrix-elements for 2 2 processes needed for the next-to-next-to-leading order contribution to inclusive jet production at hadron colliders.
17

Advanced numerical and semi-analytical scattering matrix calculations for modern nano-optics / Pas de titre en français

Weiss, Thomas 08 July 2011 (has links)
Les propriétés optiques des nanomatériaux, tels que les cristaux photoniques ou les métamatériaux, ont reçu beaucoup d’attention dans les dernières années [1–9]. La dérivation numérique de ces propriétés se révèle pourtant très compliquée, en particulier dans le cas des structures métallo-diélectriques, qui comportent des résonances plasmoniques. C’est pourquoi des méthodes numériques avancées et des modèles semi-analytiques sont nécessaires. Dans cette thèse, nous montrerons que le formalisme de la matrice de diffraction peut satisfaire ces deux aspects. La méthode de la matrice de diffraction est un concept très général en physique. Dans le cas des structures périodiques, on peut dériver la matrice de diffraction à l’aide de la méthode modale de Fourier [10]. Pour la description exacte des géométries planes, nous avons développé la méthode des coordonnées adaptées [11], qui nous donne un nouveau système de coordonnées, dans lequel les interfaces des matériaux sont des surfaces de coordonnées constantes. En combinaison avec la méthode de la résolution spatiale adaptative, la méthode des coordonnées adaptées permet d’améliorer considérablement la convergence de la méthode modale de Fourier, de telle sorte qu’on peut calculer des structures métalliques compliquées très efficacement. Si on utilise la matrice de diffraction, il est non seulement possible de dériver les propriétés optiques en illumination de champ lointain, comme la transmission, la réflexion, l’absorption, et le champ proche, mais aussi de décrire l’émission d’un objet à l’intérieur d’une structure et d’obtenir les résonances optiques d’un sytème. Dans cette thèse, nous présenterons une méthode efficace pour la dérivation des résonances optiques tridimensionnelles, utilisant directement la matrice de diffraction [14]. Si on connaît les résonances d’un système isolé, il est aussi possible d’obtenir une approximation des résonances dans le cas d’un système combiné à l’aide de notre méthode du couplage des résonances [15, 16]. Cette méthode permet de décrire le régime de couplage des champs lointain et proche, y compris le couplage fort avec les résonances Fabry-Perot, pour des systèmes qui se composent d’un empilement de deux structures planes et périodiques. Pour cette raison, on peut étudier efficacement le couplage de ces systèmes. Cette thèse est écrite de manière à donner une idée d’ensemble du formalisme de la matrice de diffraction et de la méthode modale de Fourier. En outre, nous décrivons notre généralisation de ces méthodes et nous montrons la validité de nos approches pour différents exemples. / The optical properties of nanostructures such as photonic crystals and metamaterials have drawn a lot of attention in recent years [1–9]. The numerical derivation of these properties, however, turned out to be quite complicated, especially in the case of metallo-dielectric structures with plasmonic resonances. Hence, advanced numerical methods as well as semi-analytical models are required. In this work, we will show that the scattering matrix formalism can provide both. The scattering matrix approach is a very general concept in physics. In the case of periodic grating structures, the scattering matrix can be derived by the Fourier modal method [10]. For an accurate description of non-trivial planar geometries, we have extended the Fourier modal method by the concept of matched coordinates [11], in which we introduce a new coordinate system that contains the material interfaces as surfaces of constant coordinates. In combination with adaptive spatial resolution [12,13], we can achieve a tremendously improved convergence behavior which allows us to calculate complex metallic shapes efficiently. Using the scattering matrix, it is not only possible to obtain the optical properties for far field incidence, such as transmission, reflection, absorption, and near field distributions, but also to solve the emission from objects inside a structure and to calculate the optical resonances of a system. In this work, we provide an efficient method for the ab initio derivation of three-dimensional optical resonances from the scattering matrix [14]. Knowing the resonances in a single system, it is in addition possible to obtain approximated resonance positions for stacked systems using our method of the resonant mode coupling [15, 16]. The method allows describing both near field and far field regime for stacked two-layer systems, including the strong coupling to Fabry-Perot resonances. Thus, we can study the mutual coupling in such systems efficiently. The work will provide the reader with a basic understanding of the scattering matrix formalism and the Fourier modal method. Furthermore, we will describe in detail our extensions to these methods and show their validity for several examples.
18

On string integrability : A journey through the two-dimensional hidden symmetries in the AdS/CFT dualities

Giangreco Marotta Puletti, Valentina January 2009 (has links)
One of the main topics in the modern String Theory are the conjectured string/gauge (AdS/CFT) dualities. Proving such conjectures is extremely difficult since the gauge and string theory perturbative regimes do not overlap. In this perspective, the discovery of infinitely many conserved charges, i.e. the integrability, in the planar AdS/CFT has allowed us to reach immense progresses in understanding and confirming the duality.The first part of this thesis is focused on the gravity side of the AdS5/CFT4 duality: we investigate the quantum integrability of the type IIB superstring on AdS5 x S5. In the pure spinor formulation we analyze the operator algebra by computing the operator product expansion of the Maurer-Cartan currents at the leading order in perturbation theory. With the same approach at one loop order, we show the path-independence of the monodromy matrix which implies the charge conservation law, strongly supporting the quantum integrability of the string sigma-model. We also verify that the Lax pair field strength remains well-defined at one-loop order being free from UV divergences. The same string sigma-model is analyzed in the Green-Schwarz formalism in the near-flat-space (NFS) limit. Such a limit remarkably simplifies the string world-sheet action but still leaving interesting physics. We use the NFS truncation to show the factorization of the world-sheet S-matrix at one-loop order. This property defines a two-dimensional field theory as integrable: it is the manifestation of the higher conserved charges. Hence, we have explicitly checked their presence at quantum level. The second part is dedicated to the AdS4/CFT3 duality: in particular the type IIA superstring on AdS4 x CP3. We compute the leading quantum corrections to the string energies for string configurations with a large but yet finite angular momentum on CP3 and show that they match the conjectured all-loop Bethe Ansatz equations.
19

A matriz S em teoria quântica de campos em espaços curvos / The S-Matrix for Quantum Field Theory in Curved Space-times

Villaverde-Custódio, Felipe Augusto 13 April 2012 (has links)
O objeto de estudo desta dissertação é o efeito de criação de partículas pela curvatura sob o escopo de uma teoria de espalhamento, discutindo quando que a interpretação a partir de uma matriz S é tangível e obtendo sua expressão nesses casos. O capítulo de introdução aborda superficialmente conceitos de relatividade geral e de teoria quântica de campos em espaços planos e curvos, necessários para a construção da matriz S. O conteúdo deste capítulo segue as apresentações feitas por Wald, Parker e Birrell em geral, tendo como guia as obras de Bar, Wald e Hawking no que se trata especificamente de relatividade geral, e de Penrose e Rindler no que se trata da estrutura espinorial. A construção da matriz S se dá no capítulo 2, tendo como guia o trabalho de Wald. O capítulo 3 apresenta exemplos que permitem a contextualização da criação de partículas em casos específicos de espaços-tempos em expansão. Este estudo nos permite verificar que as condições que precisam ser satisfeitas em um espaço-tempo globalmente hiperbólico e assintoticamente estacionário para que a formulação da matriz S possa ser feita são que as teorias no passado e futuro distantes devem ser unitariamente equivalentes, que a relação entre as regiões se dá através de transformações de Bogolyubov dadas por operadores limitados definidos em toda a parte e que tais operadores satisfaçam a condição de Hilbert-Schmidt. Nestes casos obtemos uma expressão para a matriz $S$ que descreve a criação de partículas pela curvatura do espaço-tempo para o campo de Klein-Gordon e de Dirac, além de outras relações úteis, como número médio de partículas criadas e probabilidade de se encontrar partículas em determinado modo, o que permite uma analogia com a radiação de corpo negro, passo fundamental para se entender fenômenos de grande interesse na física, como a radiação de Hawking e a criação de partículas no período inflacionário. / This master\'s thesis deals with the effect of particle creation by the curvature of space-time according to the point of view of scattering theory, discussing when such interpretation is possible by means of an S-matrix and obtaining its expression in those cases. The first chapter treats, superficially, some concepts of general relativity and quantum field theory in plane and curved space-times that are imperative to understand the construction of the S-matrix. The subject of this chapter is covered in the work of Wald, Parker, and Birrell, and follows closely the work of Bar, Wald and Hawking, when treats concepts specifically from general relativity, and from Penrose and Rindler, when talking about the spinor structure of space-time. The construction of the S-matrix is made in the second chapter, along the lines of the work of Wald. The third chapter presents some examples that bring some light on the creation of particles in specific cases of expanding space-times. This study let us verify that an S-matrix formulation is tenable, on globally hyperbolic asymptotic stationary curved space-times, if both quantum theories in the distant past and distant future are unitary equivalent, the relation of both regions is made by Bogolyubov transformations by means of everywhere defined bounded operators and that those operators satisfy the Hilbert-Schmidt condition. In those cases we derive the expression of the S-matrix for the Klein-Gordon and Dirac fields. Also we obtain the number of particles created and the probability of find particles in a particular mode, with let one make an analogy with the black body radiation, which is a fundamental step in the direction of understanding interesting phenomena in quantum field theory in curved space-times, like the Hawking radiation and particle creation in the early universe.
20

Kvalita účetních dat v řízení podniku / Quality of accounting data in management

VLČKOVÁ, Miroslava January 2014 (has links)
This dissertation thesis deals with the analysis of the quality of accounting data needed for company management and decision-making processes. The main objective of this thesis is to evaluate accounting data quality according to selected criteria which causally affect this quality. The focus is placed on the proposal of a model suitable for evaluation of accounting data quality for management purposes. The author focused on the issue of the quality of accounting data, the determination of criteria negatively influencing this quality and their impact on company management. Particular criteria were determined for both financial and managerial accounting, as a basic source of information for value management. The next step was to conduct procedures for calculating the weights of the particular criteria and to create evaluation models of accounting data quality. Based on the model of the quality of financial accounting, a multiple regression analysis was applied together with a stepwise analysis in order to determine a relationship between the accounting data quality and selected financial indicators. In the context of management accounting, the work analysed to what extent Czech companies use management accounting and what knowledge company managers possess in this field. After the evaluation of the conducted analyses, an implementation guide of management accounting for small and medium-sized enterprises was created, which is included in the appendix of this thesis.

Page generated in 0.0246 seconds