1 |
A study of capacitor array calibration for a successive approximation analog-to-digital converterMa, Ji, active 2013 07 October 2014 (has links)
Analog-to-digital converters (ADCs) are driven by rapid development of mobile communication systems to have higher speed, higher resolution and lower power consumption. Among multiple ADC architectures, successive approximation (SAR) ADCs attract great attention in mixed-signal design community recently. It is due to the fact that they do not contain amplification components and the digital logics are scaling friendly. Therefore, it is easier to design a SAR ADC with smaller component size in advanced technology than other ADC architectures, which decreases the power consumption and increases the speed of the circuit. However, capacitor mismatch limits the minimum size of unit capacitors which could be used for a SAR ADC with more than 10 bit resolution. Large capacitor both limits conversion speed and increases switching power. In this design project, a novel switching scheme and a novel calibration method are adopted to overcome the capacitor mismatch constraint. The switching scheme uses monotonic switching in a SAR ADC to gain one extra bit, and switches a dummy capacitor between the common mode voltage level (Vcm) and the ground (gnd) to obtain another extra bit. To keep the resolution constant, the capacitor number is reduced by two. The calibration method extracts missing code width to estimate the actual value of capacitors. The missing code extraction is accomplished by detecting metastable state of a comparator, forcing the current bit value and using less significant bits to measure the actual capacitor value. Dither method is adopted to improve calibration accuracy. Behavior model simulation is provided to verify the effectiveness of the calibration method. A circuit design of a 12 bit ADC and the simulation for schematic design is presented in this report. / text
|
2 |
A study of SAR ADC and implementation of 10-bit asynchronous designKardonik, Olga 13 December 2013 (has links)
Successive Approximation Register (SAR) Analog-to-Digital Converters (ADCs) achieve low power consumption due to its simple architecture based on dominant digital content. SAR ADCs do not require an op-amp, so they are advantageous in CMOS technology scaling. The architecture is often the best choice for battery-powered or mobile applications which need medium resolution (8-12 bits), medium speed (10 - 100 MS/s) and require low-power consumption and small form factor. This work studies the architecture in depth, highlighting its main constraints and tradeoffs involving into SAR ADC design. The work researches asynchronous operation of SAR logic and investigates the latest trends for ADC’s analog components – comparator and DAC. 10-bit asynchronous SAR ADC is implemented in CMOS 0.18 µm. Design’s noise and power are presented as a breakdown among components. / text
|
3 |
A Study of Successive Approximation Registers and Implementation of an Ultra-Low Power 10-bit SAR ADC in 65nm CMOS TechnologyHedayati, Raheleh January 2011 (has links)
In recent years, there has been a growing need for Successive Approximation Register (SAR) Analog-to-Digital Converter in medical application such as pacemaker. The demand for long battery life-time in these applications poses the requirement for designing ultra-low power SAR ADCs. This thesis work initially investigates and compares different structures of SAR control logics including the conventional structures and the delay line based controller. Additionally, it focuses on selection of suitable dynamic comparator architecture. Based on this analysis, dynamic two-stage comparator is selected due to its energy efficiency and capability of working in low supply voltages. Eventually, based on these studies an ultra-low power 10-bit SAR ADC in 65 nm technology is designed. Simulation results predict that the ADC consumes 12.4nW and achieves an energy efficiency of 14.7fJ/conversion at supply voltage of 1V and sampling frequency of 1kS/s. It has a signal-to-noise-and-distortion (SINAD) ratio of 60.29dB and effective-number-of-bits (ENOB) of 9.72 bits. The ADC is functional down to supply voltage of 0.5V with proper performance and minimal power consumption of 6.28nW.
|
4 |
A Low-Power 12bits 150-MS/s Pipelined Asynchronous Successive Approximation Analog-to-Digital ConverterYen, Yu-Wen 15 February 2011 (has links)
In this thesis, the circuits are designing with TSMC.18£gm CMOS process and 1.8V of supply voltage. The speed and resolution of ADC are 150MS/s and 12-bits individually. In order to achieve a high speed, low power consumption pipelined ADC. The proposed pipelined stage is replaced Flash ADC by SAR ADC and add an extra comparator to determine one additional bit in sampling phase of pipelined stage. This technique reduces large number of pipelined stage and opamp which is energy-hungry in the pipelined ADC. Second, the SAR ADC provides inherent sample-and-hold mechanism so that the front-end sample-and-hold amplifier circuit is non-need. Third, the SAR ADC can achieve rail-to-rail input signal swing and improve the conversion accuracy rather than Flash ADC.
The dynamic comparator is used for lower power consumption for whole circuit. Furthermore, this pipelined ADC implement under a supply voltage as low as 1.8V. The bootstrapped switch is used for controlling the sampling in the front-end. It can reduce the impacts of linearity for operating under low supply voltage. The operation amplifier implement by the partially switched-opamp technique to reduce more power consumption. Finally, the output codes are translated by digital correction circuit, it enhance the comparators input offset error tolerance.
|
5 |
A SEIR-based ADC built-in-self-test and its application in ADC self-calibrationJin, Xiankun 21 April 2014 (has links)
The static linearity test is one of the fundamental production tests used to measure DC performance of analog to digital converters (ADCs). It comes with high test equipment cost. An ADC built-in-self-test (BIST) is an attractive solution. However the stringent linearity requirement for an on-chip signal generator has made it prohibitive. The stimulus error identification and removal (SEIR) method has greatly reduced the linearity requirement. However, it requires a highly stable voltage offset, which remains a daunting task. This work exploits the inherit capacitive sample-and-hold circuit used in various ADC architectures to inject offset with very good constancy. A 16-bit successive approximate register (SAR) ADC with the proposed BIST scheme is modeled and simulated in Matlab to prove its validity. The results show that the estimation error on the maximum INL is less than 0.07 LSB. This BIST solution is then naturally extended to the calibration of an ADC. It is shown missing codes of such ADC can be effectively estimated and calibrated out. / text
|
6 |
High-Speed and Low-Power Techniques for Successive-Approximation-Register Analog-to-Digital ConvertersSwindlehurst, Eric Lee 01 April 2020 (has links)
Broadband wireless communication systems demand power-efficient analog-to-digital converters (ADCs) in the GHz and medium resolution regime. While high-speed architectures such as the flash and pipelined ADCs are capable of GHz operations, their high-power consumption reduces their attractiveness for mobile applications. On the other hand, the successive-approximation-register (SAR) ADC has an excellent power efficiency, but its slow speed has traditionally limited it to MHz applications. This dissertation puts forth several novel techniques to significantly increase the speed and power efficiency of the SAR architecture and demonstrates them in a low-power 10-GHz SAR ADC suitable for broadband wireless communications. The proposed 8-bit, 10-GHz, 8× time-interleaved SAR ADC utilizes a constant-matching DAC with symmetrically grouped unit finger capacitors to maximize speed by reducing the total DAC capacitance to 32 fF and minimizing the bottom plate parasitic capacitance. The capacitance reduction also saves power as both the DAC size and the driving logic size are reduced. An optimized asynchronous comparator loop and smaller driver logic push the single channel speed of the SAR ADC to 1.25 GHz, thus minimizing the total number of timeinterleaved channels to 8 to reach 10 GHz. A dual-path bootstrapped switch improves the spurious-free dynamic range (SFDR) of the sampling by creating an auxiliary path to drive the non-linear N-well capacitance apart from the main signal path. Using these techniques, the ADC achieves a measured signal-to-noise-and-distortion ratio (SNDR) and SFDR of 36.9 dB and 59 dB, respectively with a Nyquist input while consuming 21 mW of power. The ADC demonstrates a record-breaking figure-of-merit of 37 fJ/conv.-step, which is more than 2× better than the next best published design, among reported ADCs of similar speeds and resolutions.
|
7 |
Ultra-Low-Supply-Voltage Analog-to-Digital ConvertersPetrie, Alexander Craig 13 November 2019 (has links)
This thesis presents techniques to implement analog-to-digital converters (ADCs) under an ultra-low-supply-voltage of 0.2 V to reduce the power consumption. The thesis proposes a dynamic bulk biasing circuit to adjust the PMOS bulk voltage to balance the NMOS and PMOS drain currents to guarantee functionality in the presence of process, voltage, and temperature variations. The dynamic bulk bias circuit is analyzed rigorously to show its functionality. This thesis also describes a new comparator suitable for a 0.2-V supply using ac-coupling, stacked input pairs, and voltage-boosted load capacitor. A 10-bit 5-kS/s successive-approximation-register (SAR) ADC in a 180-nm CMOS process with a supply voltage of 0.2 V demonstrates these ideas. The ADC exhibits a differential nonlinearity (DNL) and integral nonlinearity (INL) within +0.42/-0.45 and +0.62/-0.67 LSB, respectively. The measured SFDR and SNDR at 5 kS/s with a Nyquist-frequency input are 65.9 dB and 52.1 dB, respectively. The entire ADC and dynamic bulk biasing circuitry consume 22 nW including leakage power to yield a figure-of-meirt (FoM) of 8.8 fJ/conv.-step. Measurements of multiple chips show the proposed dynamic bulk biasing fully recovers the ADC performance when the supply voltage is varied. The nW power consumption makes the design well suited for wireless sensor node and energy harvester applications.
|
8 |
10-bit C2C DAC Design in 65nm CMOS TechnologyKommareddy, Jeevani 16 August 2019 (has links)
No description available.
|
9 |
SAR ADC Using Single-Capacitor Pulse Width To Analog Converter Based DACZHANG, GUANGLEI, ZHANG 11 June 2018 (has links)
No description available.
|
10 |
Time and statistical information utilization in high efficiency sub-micron CMOS successive approximation analog to digital convertersGuerber, Jon 07 January 2014 (has links)
In an industrial and consumer electronic marketplace that is increasingly demanding greater real-world interactivity in portable and distributed devices, analog to digital converter efficiency and performance is being carefully examined. The successive approximation (SAR) analog to digital converter (ADC) architecture has become popular for its high efficiency at mid-speed and resolution requirements. This is due to the one core single bit quantizer, lack of residue amplification, and large digital domain processing allowing for easy process scaling. This work examines the traditional binary capacitive SAR ADC time and statistical information and proposes new structures that optimize ADC performance. The Ternary SAR (TSAR) uses the quantizer delay information to enhance accuracy, speed and power consumption of the overall SAR while providing multi-level redundancy. The early reset merged capacitor switching SAR (EMCS) identifies lost information in the SAR subtraction and optimizes a full binary quanitzer structure for a Ternary MCS DAC. Residue Shaping is demonstrated in SAR and pipeline configurations to allow for an extra bit of signal to noise quantization ratio (SQNR) due to multi-level redundancy. The feedback initialized ternary SAR (FITSAR) is proposed which splits a TSAR into separate binary and ternary sub-ADC structures for speed and power benefits with an inter-stage encoding that not only maintains residue shaping across the binary SAR, but allows for nearly optimally minimal energy consumption for capacitive ternary DACs. Finally, the ternary SAR ideas are applied to R2R DACs to reduce power consumption. These ideas are tested both in simulation and with prototype results. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from Jan. 7, 2013 - Jan. 7, 2014
|
Page generated in 0.0162 seconds