• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 10
  • Tagged with
  • 14
  • 14
  • 10
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular characterization of the nucleocapsid protein of severe acute respiratory syndrome-associated coronavirus (SARS-CoV).

January 2005 (has links)
Poon Wing Ming Jodie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 207-233). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 論文摘要 --- p.iv / Abbreviations --- p.v / List of Figures --- p.x / List of Tables --- p.xiii / Contents --- p.xiv / Chapter CHAPTER ONE --- INTRODUCTION --- p.1 / Chapter 1.1. --- Severe Acute Respiratory Syndrome (SARS) --- p.1 / Chapter 1.1.1. --- Background of SARS --- p.1 / Chapter 1.1.2. --- Etiology and pathology of SARS --- p.3 / Chapter 1.1.3. --- Genome organization and expression of SARS-CoV --- p.5 / Chapter 1.1.4. --- Current molecular advances of SARS-CoV --- p.13 / Chapter 1.1.5. --- Current research advances on SARS-CoV nucleocapsid --- p.18 / Chapter 1.1.6. --- Current diagnostic assays of SARS-CoV infection --- p.23 / Chapter 1.1.7. --- Current treatment --- p.25 / Chapter 1.1.8. --- Vaccine development --- p.27 / Chapter 1.2. --- Aims of study --- p.30 / Chapter CHAPTER TWO --- MATERIALS AND METHODS --- p.33 / Chapter 2.1. --- Subcellular localization study of the SARS-CoV nucleocapsid protein --- p.33 / Chapter 2.1.1. --- "Cloning of SARS-CoV nucleocapsid cDNA into the green fluorescence protein (GFP) mammalian expression vector, pEGFP-C1" --- p.33 / Chapter 2.1.1.1. --- Amplification of SARS-CoV nucleocapsid gene by polymerase chain reaction (PCR) --- p.33 / Chapter 2.1.1.2. --- Purification of PCR products --- p.35 / Chapter 2.1.1.3. --- Restriction digestion of purified PCR products and the circular pEGFP-C 1 vector --- p.36 / Chapter 2.1.1.4. --- Ligation --- p.36 / Chapter 2.1.1.5. --- Preparation of chemically competent bacterial cell E.coli strain DH5a for transformation --- p.37 / Chapter 2.1.1.6. --- Transformation of ligation product into chemically competent bacterial cells --- p.38 / Chapter 2.1.1.7. --- Small-scale preparation of bacterial plasmid DNA --- p.39 / Chapter 2.1.1.8. --- Screening for recombinant clones --- p.40 / Chapter 2.1.1.9. --- DNA sequencing of cloned plasmid DNA --- p.41 / Chapter 2.1.1.10. --- Midi-scale preparation of recombinant plasmid DNA --- p.42 / Chapter 2.1.2. --- Cell culture --- p.44 / Chapter 2.1.2.1. --- Sub-culture of VeroE6 and HepG2 cell lines --- p.44 / Chapter 2.1.2.2. --- Transient transfection of GFP fusion construct --- p.45 / Chapter 2.1.3. --- Epi-fluorescent microscopy --- p.46 / Chapter 2.2. --- Study on differential gene expression patterns upon SARS-CoV nucleocpasid induction by cDNA microarray analysis --- p.48 / Chapter 2.2.1. --- Cloning of SARS-CoV N gene into mammalian expression vector pCMV-Tagl --- p.48 / Chapter 2.2.2. --- Cell culture --- p.50 / Chapter 2.2.2.1. --- Sub-culture of VeroE6 cell line --- p.50 / Chapter 2.2.2.2. --- Transient transfection of pCMV-Tag1 -SAR-CoV N construct --- p.50 / Chapter 2.2.3. --- Total RNA isolation --- p.51 / Chapter 2.2.3.1. --- Total RNA isolation by RNeasy Mini Kit --- p.51 / Chapter 2.2.3.2. --- Checking of RNA integrity --- p.53 / Chapter 2.2.3.3. --- Checking of RNA purity --- p.54 / Chapter 2.2.3.4. --- Determinations of total RNA concentrations and precipitation --- p.54 / Chapter 2.2.4. --- cDNA microarray (done by Affymetrix Inc. as a customer service) --- p.55 / Chapter 2.2.4.1. --- Precipitation of RNA --- p.55 / Chapter 2.2.4.2. --- Quantification of RNA --- p.56 / Chapter 2.2.4.3. --- Synthesis of double-stranded cDNA from total RNA --- p.56 / Chapter (i) --- First stand cDNA synthesis --- p.56 / Chapter (ii) --- Second cDNA synthesis --- p.57 / Chapter 2.2.4.4. --- Clean-up of double stranded cDNA --- p.58 / Chapter (i) --- Phase lock gel-phenol/ chloroform extraction --- p.58 / Chapter (ii) --- Ethanol precipitation --- p.58 / Chapter 2.2.4.5. --- Synthesis of biotin-labeled cRNA --- p.59 / Chapter 2.2.4.6. --- Clean-up and quantification of in vitro transcription (IVP) products --- p.59 / Chapter (i) --- In vitro transcription clean-up --- p.59 / Chapter (ii) --- Ethanol precipitation --- p.60 / Chapter (iii) --- Quantitation of cRNA --- p.60 / Chapter (iv) --- Sample checking --- p.60 / Chapter 2.2.4.7. --- cRNA fragmentation for target preparation --- p.60 / Chapter 2.2.4.8. --- Eukaryotic target hybridization --- p.61 / Chapter 2.2.4.9. --- "Probe array washing, staining and scanning" --- p.62 / Chapter 2.2.5. --- Confirmation of results by RT-PCR --- p.62 / Chapter 2.2.5.1. --- First-strand cDNA synthesis --- p.62 / Chapter 2.2.5.2. --- RT-PCR of candidate gene --- p.63 / Chapter 2.3. --- In vitro RNA interference of SARS-CoV nucleocapsid --- p.66 / Chapter 2.3.1. --- siRNA target site selection --- p.66 / Chapter 2.3.2. --- Cloning of target siRNA sequences into pSilencer 3.1-H1 vector --- p.71 / Chapter 2.3.3. --- Cell culture --- p.72 / Chapter 2.2.3.1. --- Sub-culture ofVeroE6 cells --- p.72 / Chapter 2.3.3.2. --- Transient co-transfection --- p.72 / Chapter 2.3.4. --- Detection of SARS-CoV nucleocapsid mRNA expression level by RT-PCR --- p.73 / Chapter 2.3.4.1. --- Total RNA isolation by TRIzol reagent --- p.73 / Chapter 2.3.4.2. --- First-strand cDNA synthesis --- p.74 / Chapter 2.3.4.3. --- RT-PCR assays --- p.74 / Chapter 2.3.5. --- Detection of SARS-CoV nucleocapsid protein expression level by Western blotting --- p.75 / Chapter 2.3.5.1. --- Total protein extraction --- p.75 / Chapter 2.3.5.2. --- Protein quantification --- p.75 / Chapter 2.3.5.3. --- Protein separation by SDS-PAGE and Western blot --- p.76 / Chapter 2.3.5.4. --- Western blot analysis --- p.78 / Chapter 2.4. --- Human fgl2 prothrombinase promoter analyses --- p.80 / Chapter 2.4.1. --- Cloning of the full-length human fgl2 prothrombinase promoter construct into a promoterless mammalian expression vector-pGL3-Basic --- p.80 / Chapter 2.4.2. --- Cloning of SARS-CoV Membrane gene into the mammalian expression vector pCMV-Tagl --- p.82 / Chapter 2.4.3. --- Cell culture --- p.84 / Chapter 2.4.3.1. --- Sub-culture of HepG2 and VeroE6 cell lines --- p.84 / Chapter 2.4.3.2. --- "Transient co-transfection of the full-length human fgl2 prothrombinase promoter construct with the pCMV-Tagl empty vector, pCMV-Tagl-SARS-CoV M expression vector, or pCMV-Tag1 -SARS-CoV N expression vector" --- p.84 / Chapter 2.4.4. --- Dual-luciferase reporter assay --- p.85 / Chapter 2.4.5. --- Detection of fgl2 mRNA expression level under the induction of SARS-CoV nucleocapsid protein by RT-PCR --- p.86 / Chapter 2.4.5.1. --- Total RNA isolation by TRIzol reagent --- p.86 / Chapter 2.4.5.2. --- First strand cDNA synthesis --- p.86 / Chapter 2.4.5.3. --- RT-PCR of fgl2 gene --- p.87 / Chapter CHAPTER THREE --- RESULTS --- p.88 / Chapter 3.1. --- Computer analysis of SARS-CoV Nucleocapsid --- p.88 / Chapter 3.2. --- Subcellular localization of SARS-CoV nucleopcasid protein in VeroE6 cells and HepG2 cells --- p.102 / Chapter 3.3. --- cDNA microarray analysis on differential gene expression pattern upon the over-expression of SARS-CoV Nucleocapsid gene --- p.114 / Chapter 3.4. --- In vitro RNA Interference of SARS nucleocapsid --- p.129 / Chapter 3.5. --- Transactivation of fgl2 prothrombinase gene promoter by SARS-CoV nucleocapsid protein in HepG2 and VE6 cells --- p.138 / Chapter CHAPTER FOUR --- DISCUSSION --- p.155 / Chapter 4.1. --- "The EGFP-tagged SARS-CoV N protein was localized in the cytoplasm only in VE6 cells, but translocated into both cytoplasm and nucleus in HepG2 cellsin the epi-fluorescence microscopy study" --- p.155 / Chapter 4.2. --- cDNA microarray demonstrated alternations of mRNA transcript level on a number of genes belonging to various functional classes upon over expression of SARS-CoV nucleocapsid gene --- p.162 / Chapter 4.3. --- RNA interference demonstrated effective gene silencing of SARS-CoV nucleocapsid gene --- p.171 / Chapter 4.4. --- SASR-CoV nucleocapsid protein induced the promoter activity of the prothrombinase fibrinogen-like protein2/ fibroleukin (fgl2) gene --- p.191 / Chapter 4.5. --- Conclusion --- p.196 / Chapter 4.6. --- Future work --- p.198 / Appendices --- p.199 / References --- p.207
2

Cloning, expression, purification and functional characterization of non-structural protein 10 (nsp10) and RNA-dependent RNA polymerase (RdRp) of SARS coronavirus. / Cloning, expression, purification & functional characterization of non-structural protein 10 (nsp10) & RNA-dependent RNA polymerase (RdRp) of SARS coronavirus

January 2006 (has links)
Ho Hei Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 189-199). / Abstracts in English and Chinese. / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Epidemiology of the Severe Acute Respiratory Syndrome (SARS) Outbreak --- p.2 / Chapter 1.2 --- The SARS Coronavirus --- p.3 / Chapter 1.2.1 --- Genome organization --- p.7 / Chapter 1.2.2 --- Structural proteins --- p.9 / Chapter 1.2.3 --- Non-structural proteins --- p.11 / Chapter 1.3 --- Introduction to SARS-CoV nsp10 Protein --- p.14 / Chapter 1.4 --- Introduction to SARS-CoV RNA-dependent RNA Polymerase (RdRp) Protein --- p.17 / Chapter 1.5 --- Objectives of the Present Study --- p.25 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Construction of Glutathione S-Transferase (GST) Fusion/Green Fluorescence Protein (GFP) N1 and C1 Fusion nsplO --- p.26 / Chapter 2.1.1 --- Primer design --- p.26 / Chapter 2.1.2 --- Gene amplification by PCR --- p.28 / Chapter 2.1.3 --- Purification of PCR product --- p.30 / Chapter 2.1.4 --- Enzyme restriction --- p.31 / Chapter 2.1.5 --- Ligation --- p.33 / Chapter 2.1.6 --- Transformation --- p.34 / Chapter 2.1.6.1 --- Preparation of competent cell DH5α --- p.34 / Chapter 2.1.7 --- Mini scale plasmid preparation --- p.36 / Chapter 2.2 --- Subcellular Localization Study --- p.39 / Chapter 2.2.1 --- Midi scale plasmid preparation --- p.39 / Chapter 2.2.2 --- Transfection of GFP recombinant plasmids --- p.41 / Chapter 2.2.2.1 --- Cell culture of Vero E6 cell line --- p.41 / Chapter 2.2.2.2 --- Lipofectamine based transfection --- p.41 / Chapter 2.2.3 --- Fluorescent microscopic visualization --- p.42 / Chapter 2.2.4 --- Western blotting for GFP fusion protein expression --- p.43 / Chapter 2.2.4.1 --- Protein extraction --- p.43 / Chapter 2.2.4.2 --- Protein quantification --- p.44 / Chapter 2.2.3.4 --- SDS-PAGE analysis --- p.45 / Chapter 2.3 --- "Expression of GFP-nsp10 in Vero E6 cells, SARS-CoV Infected Vero E6 Cells and Convalescent Patients' Serum" --- p.47 / Chapter 2.3.1 --- Cell-based immunostaining of VeroE6 cells and SARS-CoV infected Vero E6 cells --- p.47 / Chapter 2.3.1.1 --- Immobilization of Vero E6 cells and SARS-CoV infected Vero E6 cells --- p.47 / Chapter 2.3.1.2 --- Preparation of monoclonal antibodies against SARS-CoV nsp10 --- p.48 / Chapter 2.3.1.3 --- Immunostaining of SARS-CoV nsp10 in Vero E6 cells and SARS-CoV VeroE6 cells --- p.48 / Chapter 2.3.1.4 --- Fluorescent microscopic visualization --- p.49 / Chapter 2.3.2 --- Detection of SARS-CoV nsplO expression in SARS-CoV infected convalescent patients' serum --- p.50 / Chapter 2.3.2.1 --- Western blotting of SARS-CoV nsp10 by SARS-CoV infected convalescent patients' serum --- p.50 / Chapter 2.4 --- Expression of GST fusion SARS-CoV nsp10 in E.coli --- p.51 / Chapter 2.4.1 --- Preparation of competent cells --- p.51 / Chapter 2.4.2 --- Small scale expression --- p.51 / Chapter 2.4.3 --- Large scale expression of GST-nsp10 in optimized conditions --- p.54 / Chapter 2.5 --- Purification of GST fusion SARS-CoV nsp10 --- p.55 / Chapter 2.5.1 --- Glutathione Sepharose 4B affinity chromatography --- p.55 / Chapter 2.5.2 --- Superdex 75 gel filtration chromatography --- p.56 / Chapter 2.6 --- "CD Measurement, NMR and Crystallization Study of SARS-CoV nsp10" --- p.57 / Chapter 2.6.1 --- CD measurement --- p.57 / Chapter 2.6.2 --- NMR spectroscopy --- p.58 / Chapter 2.6.3 --- Crystallization of nsp10 --- p.58 / Chapter 2.7 --- "Glutathione-S-Sepharose Pull-down assay, 2D Gel Electrophoresis and Mass Spectrometry" --- p.59 / Chapter 2.7.1 --- GST pull-down assay --- p.59 / Chapter 2.7.2 --- Two-dimension gel electrophoresis --- p.59 / Chapter 2.7.2.1 --- First dimensional isoelectric focusing (IEF) --- p.59 / Chapter 2.7.2.2 --- Second dimension SDS-PAGE --- p.60 / Chapter 2.7.2.3 --- Silver staining --- p.61 / Chapter 2.7.3 --- Protein identification by mass spectrometry --- p.63 / Chapter 2.7.3.1 --- Data acquisition --- p.65 / Chapter 2.8 --- Proliferative study of SARS-CoV nsp10 in VeroE6 Cell Line and Mouse Splenocytes --- p.66 / Chapter 2.8.1 --- Assay of mitogenic activity by 3H-thymidine incorporation --- p.66 / Chapter 2.9 --- "Cloning, Expression and Purification of GST fusion SARS-CoV RNA-dependent RNA Polymerase (RdRp) Full- length Protein" --- p.67 / Chapter 2.9.1 --- Construction of GST-RdRp-full length expression plasmid --- p.67 / Chapter 2.9.2 --- Expression and purification of GST-RdRp full-length protein --- p.68 / Chapter 2.10 --- "Cloning, Expression and Purification of GST Fusion SARS-CoV RNA-dependent RNA Polymerase (RdRp) Catalytic Domain" --- p.70 / Chapter 2.10.1 --- Construction of GST-RdRp Catalytic Domain (p64) and MBP-RdRp-p64 expression plasmids --- p.70 / Chapter 2.10.2 --- Expression and purification of GST fusion catalytic domain of SARS-CoV RdRp (GST-p64) --- p.71 / Chapter 2.10.3 --- Expression and purification of MBP fusion catalytic domain of SARS-CoV RdRp --- p.72 / Chapter 2.11 --- "Cloning, Expression and Purification of the His-thioredoxin Fusion N-terminal Domain of SARS-CoV RdRp (pET32h-pl2)" --- p.74 / Chapter 2.11.1 --- Construction of His-thioredoxin fusion N-terminal domain of SARS-CoV RdRp (pET32h-pl2) expression plasmid --- p.74 / Chapter 2.11.2 --- Expression and purification of His- thioredoxin fusion N-terminal domain of SARS-CoV RdRp (pET32h-pl2) --- p.74 / Chapter 2.12 --- Interaction Study of RdRp Catalytic Domain and N-terminal Domain --- p.76 / Chapter 2.13 --- Electrophoretic Mobility Shift Assay of SARS-CoV Genomic RNA Strands with RdRp Full-length sequence --- p.76 / Chapter 2.13.1 --- Preparation of RNA transcripts --- p.76 / Chapter 2.13.2 --- EMSA --- p.77 / Chapter 2.14 --- Non-radiometric and Radiometric RdRp Assays --- p.78 / Chapter 2.14.1 --- Non-radiometric RdRp assay--luciferase coupled enzyme assay --- p.78 / Chapter 2.14.2 --- Radiometric RdRp assay ´ؤ filter-binding enzyme assay --- p.79 / Chapter 2.15 --- Western Blot Analysis for Interaction Study --- p.80 / Chapter Chapter 3 --- Results and Discussion on SARS-CoV nsplO --- p.81 / Chapter 3.1 --- "Cloning, Expression and Purification of SARS-CoV nsp10 in Prokaryotic Expression System" --- p.81 / Chapter 3.1.1 --- Cloning and expression of SARS-CoV nsp 10 --- p.81 / Chapter 3.1.2 --- Purification of GST-nsp10 by GST affinity chromatography --- p.84 / Chapter 3.1.3 --- Purification of nsp10 by size exclusion chromatography --- p.85 / Chapter 3.1.4. --- "Yield, purity and stability of SARS-CoV nsp 10" --- p.88 / Chapter 3.2 --- SARS-CoV nsp10 Sequence Alignment and Protein Structure Prediction --- p.89 / Chapter 3.2.1. --- Sequence alignment of SAR-CoV nsp10 with known viral proteins --- p.91 / Chapter 3.2.2 --- Protein structure prediction - homology modeling --- p.93 / Chapter 3.3 --- Circular Dichroism Analysis of nsp10 --- p.96 / Chapter 3.3.1 --- CD spectrum of SARS-CoV nsp10 --- p.98 / Chapter 3.3.2. --- Effect of divalent metal ions on SARS-CoV nsp10 --- p.99 / Chapter 3.4 --- Nuclear Magnetic Resonance Analysis of nsp10 --- p.101 / Chapter 3.4.1 --- Sample preparation for NMR Experiment --- p.102 / Chapter 3.4.2 --- Protein structure determination by NMR --- p.103 / Chapter 3.5 --- Crystallization of SARS-CoV nsp10 --- p.105 / Chapter 3.5.1 --- Sample preparation of nsp10 for crystallization --- p.105 / Chapter 3.5.2 --- Screening conditions for crystallization --- p.106 / Chapter 3.6 --- "Antigenic, Immunofluorescene and Subcellular Localization Studies on the SARS-CoV nsp10" --- p.110 / Chapter 3.6.1 --- Antigenic and immunofluorescene studies on the SARS-CoV nsp10 --- p.110 / Chapter 3.6.2 --- Subcellular localization of SARS-CoV nsp10 --- p.115 / Chapter 3.7 --- Proliferative Study of nsp10 --- p.120 / Chapter 3.7.1. --- Influence of proliferative effect on the host cell --- p.121 / Chapter 3.8 --- A Proteomics Strategy for Interaction Study of nsp10 --- p.124 / Chapter 3.8.1 --- 2D SDS-PAGE analysis of proteins associating with the nsp10 bait --- p.125 / Chapter 3.8.2 --- Silver staining of proteins associating with the nsp10 bait and their identification by mass spectrometry --- p.127 / Chapter 3.9 --- Discussion on SARS-CoV nsp10 --- p.129 / Chapter Chapter 4 --- Results and Discussion on SARS-CoV RdRp / Chapter 4.1 --- "Cloning, Expression and Purification of SARS-CoV RdRp Full-length, Catalytic Domain and N-terminal Domain" --- p.139 / Chapter 4.2 --- Interaction Study of RdRp Catalytic Domain and its N-terminal Domain --- p.147 / Chapter 4.3 --- Functional Analysis of RNA Binding by the SARS-CoV RdRp --- p.149 / Chapter 4.4 --- Characterization of RdRp by Non-radioactive RdRp Assay ´ؤ Luciferase-coupled Enzyme Assay --- p.152 / Chapter 4.5 --- Characterization of RdRp by Radioactive RdRp Assay ´ؤ 32P Incorporation Assay --- p.157 / Chapter 4.6 --- Discussion on SARS-CoV RdRp --- p.161 / Chapter Chapter 5 --- General Discussion / General Discussion --- p.170 / Appendix --- p.172 / References --- p.189
3

Characterization of spike glycoprotein fusion core and 3C-like protease substrate specificity of the severe acute respiratory syndrome (SARS) coronavirus: perspective for anti-SARS drug development.

January 2006 (has links)
Chu Ling Hon Matthew. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 201-223). / Abstracts in English and Chinese. / Declaration --- p.i / Thesis/Assessment Committee --- p.ii / Abstract --- p.iii / 摘要 --- p.vi / Acknowledgements --- p.viii / General abbreviations --- p.xi / Abbreviations of chemicals --- p.xv / Table of Contents --- p.xvi / List of Figures --- p.xxiii / List of tables --- p.xxviii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Severe Acute Respiratory Syndrome (SARS) - Three Years in Review --- p.1 / Chapter 1.1.1 --- Epidemiology --- p.1 / Chapter 1.1.2 --- Clinical presentation --- p.3 / Chapter 1.1.3 --- Diagnostic tests --- p.5 / Chapter 1.2 --- Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) --- p.7 / Chapter 1.2.1 --- SARS - Identification of the etiological agent --- p.7 / Chapter 1.2.2 --- The coronaviruses --- p.9 / Chapter 1.2.3 --- The genome organization of SARS-CoV --- p.11 / Chapter 1.2.4 --- The life cycle of SARS-CoV --- p.13 / Chapter 1.3 --- Spike Glycoprotein (S protein) of SARS-CoV --- p.15 / Chapter 1.3.1 --- SARS-CoV S protein --- p.15 / Chapter 1.3.2 --- S protein-driven infection --- p.17 / Chapter 1.4 --- SARS-CoV S Protein Fusion Core --- p.22 / Chapter 1.4.1 --- Heptad repeat and coiled coil --- p.22 / Chapter 1.4.2 --- The six-helix coiled coil bundle structure --- p.25 / Chapter 1.5 --- 3C-like Protease (3CLpro) of SARS-CoV --- p.28 / Chapter 1.5.1 --- Extensive proteolytic processing of replicase polyproteins --- p.28 / Chapter 1.5.2 --- SARS-CoV 3CLpro --- p.30 / Chapter 1.5.3 --- Substrate Specificity of SARS-CoV 3CLpro --- p.31 / Chapter 1.6 --- SARS Drug Development --- p.32 / Chapter 1.6.1 --- Drug targets of SARS-CoV --- p.32 / Chapter 1.6.2 --- Current anti-SARS drugs --- p.36 / Chapter 1.7 --- Project Objectives --- p.39 / Chapter 1.7.1 --- Characterization of SARS-CoV S protein fusion core --- p.39 / Chapter 1.7.2 --- Characterization of SARS-CoV 3CLpr0 substrate specificity --- p.40 / Chapter 2 --- Materials and Methods --- p.42 / Chapter 2.1 --- Characterization of SARS-CoV S Protein Fusion Core --- p.42 / Chapter 2.1.1 --- Bioinformatics analyses of heptad repeat regions of SARS- CoV S protein --- p.42 / Chapter 2.1.2 --- Recombinant protein approach --- p.43 / Chapter 2.1.2.1 --- Plasmids construction --- p.43 / Chapter 2.1.2.2 --- Protein expression and purification --- p.52 / Chapter 2.1.2.3 --- Amino acid analysis --- p.57 / Chapter 2.1.2.4 --- GST-pulldown experiment --- p.58 / Chapter 2.1.2.5 --- Laser light scattering --- p.61 / Chapter 2.1.2.6 --- Size-exclusion chromatography --- p.62 / Chapter 2.1.2.7 --- Circular dichroism spectroscopy --- p.62 / Chapter 2.1.3 --- Synthetic peptide approach --- p.64 / Chapter 2.1.3.1 --- Peptide synthesis --- p.64 / Chapter 2.1.3.2 --- Native polyacrylamide gel electrophoresis --- p.65 / Chapter 2.1.3.3 --- Size-exclusion high-performance liquid chromato-graphy --- p.66 / Chapter 2.1.3.4 --- Laser light scattering --- p.66 / Chapter 2.1.3.5 --- Circular dichroism spectroscopy --- p.67 / Chapter 2.2 --- Identification of SARS-CoV Entry Inhibitors --- p.70 / Chapter 2.2.1 --- HIV-luc/SARS pseudotyped virus entry inhibition assay --- p.70 / Chapter 2.2.2 --- Recombinant protein- and synthetic peptide-based biophysical assays --- p.74 / Chapter 2.2.3 --- Molecular modeling --- p.75 / Chapter 2.3 --- Characterization of SARS-CoV 3CLpro Substrate Specificity --- p.79 / Chapter 2.3.1 --- Protein expression and purification --- p.79 / Chapter 2.3.2 --- """Cartridge replacement"" solid-phase peptide synthesis" --- p.80 / Chapter 2.3.3 --- Peptide cleavage assay and mass spectrometric analysis --- p.83 / Chapter 3 --- Results --- p.84 / Chapter 3.1 --- Characterization of SARS-CoV S Protein Fusion Core --- p.84 / Chapter 3.1.1 --- Bioinformatics analyses of heptad repeat regions of SARS- CoV S protein --- p.84 / Chapter 3.1.2 --- Recombinant protein approach --- p.87 / Chapter 3.1.2.1 --- "Plasmids construction of pET-28a-His6-HRl, pGEX-6P-l-HR2 and pGEX-6P-l-2-Helix" --- p.87 / Chapter 3.1.2.2 --- Protein expression and purification --- p.92 / Chapter 3.1.2.3 --- GST-pulldown experiment --- p.101 / Chapter 3.1.2.4 --- Laser light scattering --- p.103 / Chapter 3.1.2.5 --- Size-exclusion chromatography --- p.105 / Chapter 3.1.2.6 --- Circular dichroism spectroscopy --- p.107 / Chapter 3.1.3 --- Synthetic peptide approach --- p.112 / Chapter 3.1.3.1 --- Peptide synthesis --- p.112 / Chapter 3.1.3.2 --- Native polyacrylamide gel electrophoresis --- p.116 / Chapter 3.1.3.3 --- Size-exclusion high-performance liquid chromatography --- p.117 / Chapter 3.1.3.4 --- Laser light scattering --- p.122 / Chapter 3.1.3.5 --- Circular dichroism spectroscopy --- p.124 / Chapter 3.2 --- Identification of SARS-CoV Entry Inhibitors --- p.129 / Chapter 3.2.1 --- HIV-luc/SARS pseudotyped virus entry inhibition assay --- p.129 / Chapter 3.2.2 --- Recombinant protein- and synthetic peptide-based biophysical assays --- p.131 / Chapter 3.2.3 --- Molecular modeling --- p.135 / Chapter 3.3 --- Characterization of SARS-CoV 3CLpro Substrate Specificity --- p.141 / Chapter 3.3.1 --- Protein expression and purification --- p.141 / Chapter 3.3.2 --- Substrate specificity preference of SARS-CoV 3CLpr0 --- p.142 / Chapter 3.3.3 --- "Primary and secondary screening using the ""cartridge replacement strategy""" --- p.142 / Chapter 4 --- Discussion --- p.149 / Chapter 4.1 --- Characterization of SARS-CoV S Protein Fusion Core --- p.149 / Chapter 4.1.1 --- Design of recombinant proteins and synthetic peptides of HR regions --- p.149 / Chapter 4.1.2 --- Recombinant protein approach --- p.151 / Chapter 4.1.3 --- Synthetic peptide approach --- p.153 / Chapter 4.1.4 --- Summary of the present and previous studies in the SARS-CoV S protein fusion core --- p.157 / Chapter 4.2 --- Identification of SARS-CoV Entry Inhibitors --- p.167 / Chapter 4.2.1 --- HIV-luc/SARS pseudotyped virus entry inhibition assay --- p.167 / Chapter 4.2.2 --- Identification of peptide inhibitors --- p.168 / Chapter 4.2.3 --- Identification of small molecule inhibitors --- p.172 / Chapter 4.3 --- Characterization of SARS-CoV 3CLpro Substrate Specificity --- p.183 / Chapter 4.3.1 --- A comprehensive overview of the substrate specificity of SARS-CoV 3CLpro --- p.184 / Chapter 4.3.2 --- The development of the rapid and high-throughput screening strategy for protease substrate specificity --- p.188 / Appendix --- p.191 / Chapter I. --- Nucleotide Sequence of S protein of SARS-CoV --- p.191 / Chapter II. --- Protein Sequence of S protein of SARS-CoV --- p.194 / Chapter III. --- Protein Sequence of 3CLpro of SARS-CoV --- p.195 / Chapter IV. --- Vector maps --- p.196 / Chapter 1. --- Vector map and MCS of pET-28a --- p.196 / Chapter 2. --- Vector map and MCS of pGEX-6P-l --- p.197 / Chapter V. --- Electrophoresis markers --- p.198 / Chapter 1. --- GeneRuler´ёØ 1 kb DNA Ladder --- p.198 / Chapter 2. --- GeneRuler´ёØ 100bp DNA Ladder --- p.198 / Chapter 3. --- High-range Rainbow Molecular Weight Markers --- p.199 / Chapter 4. --- Low-range Rainbow Molecular Weight Markers --- p.199 / Chapter VI. --- SDS-PAGE gel preparation protocol --- p.200 / References --- p.201
4

Substrate specificity of severe acute respiratory syndrome coronavirus main protease.

January 2006 (has links)
Chong Lin-Tat. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 76-78). / Abstracts in English and Chinese. / Chapter Chapter 1 --- introduction / Chapter 1.1 --- Severe acute respiratory syndrome Coronavirus (SARS CoV) --- p.13 / Figure 1.1 Genome organization and putative functional ORFs of SARS CoV --- p.14 / Chapter 1.2 --- SARS main protease / Chapter 1.2.1 --- Three dimensional structure --- p.15 / Figure 1.2 Ribbon illustration of the SARS-coronavirus main protease --- p.17 / Figure 1.3 Surface representations of P1 and P2 substrate-binding pocket of main protease --- p.18 / Chapter 1.2.2 --- Substrate specificities --- p.19 / Table 1.1. Eleven predicted cleavage sites of SARS CoV main protease --- p.21 / Chapter 1.3 --- Protein-based FRET assay system --- p.22 / Figure 1.4. The principle of fluorescent resonance energy transfer (FRET) --- p.24 / Chapter 1.4 --- Objectives --- p.25 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- General Techniques / Chapter 2.1.1 --- Preparation and transformation of competent E. coli DH5a and23 BL21 (DE3)pLysS --- p.26 / Chapter 2.1.2 --- Minipreparation of plasmid DNA (Invitrogen) --- p.27 / Chapter 2.1.3 --- Spectrophotometric quantitation DNA --- p.28 / Chapter 2.1.4 --- Agarose gel electrophoresis / Chapter 2.1.5 --- Purification of DNA from agarose gel (Invitrogen) / Chapter 2.1.6 --- Restriction digestion of DNA fragments --- p.29 / Chapter 2.1.7 --- Ligation of DNA fragments into vector / Table 2.1. Standard recipe of ligation reaction --- p.30 / Chapter 2.1.8 --- SDS-PAGE electrophoresis --- p.31 / Table 2.2. Standard recipe of separating gel for SDS-PAGE --- p.32 / Table 2.3. Standard recipe of stacking gel for SDS-PAGE --- p.33 / Chapter 2.2 --- Sub-cloning and site-directed mutagenesis / Chapter 2.2.1 --- Sub-cloning of SARS Co V main protease --- p.34 / Chapter 2.2.2 --- Sub-cloning of Substrate / Chapter 2.2.3 --- Site-directed mutagenesis of substrate variant --- p.35 / Table 2.4 Primer sequence for generating substrate variants --- p.36 / Table 2.5. Standard recipe of Polymerase Chain Reaction (PCR) --- p.40 / Table 2.6. Polymerase Chain Reaction (PCR) profile --- p.41 / Chapter 2.3 --- Sample preparation / Chapter 2.3.1 --- Expression of recombinant proteins --- p.42 / SARS CoV main protease / Substrate and substrate variants / Chapter 2.3.2 --- Purification of recombinant proteins / SARS CoV main protease / Substrate and substrate variants / Chapter 2.4 --- Protein-based FRET kinetic analysis --- p.45 / Chapter 2.5 --- A model for substrate-enzyme binding by docking simulation --- p.46 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Preparation of SARS CoV main protease and substrate / Chapter 3.1.1 --- Expression and purification of SARS main protease --- p.48 / Figure 3.1. Purification profile of SARS CoV main protease --- p.49 / Chapter 3.1.2 --- Expression and purification of substrate and substrate variants --- p.50 / Figure 3.2. Purification profile of substrate and substrate variants --- p.51 / Chapter 3.2 --- A novel protein-based FRET assay system was established / Chapter 3.2.1 --- "With the cleavage of active main protease, absorbance at 528nm dropped while signal at 485nm were slightly increased" --- p.52 / Figure 3.3. Absorbance at 528nm dropped and 485nm increased with the substrate hydrolysis --- p.53 / Chapter 3.2.2 --- FRET efficiency ratio (528/485) decreased over time --- p.54 / Figure 3.4. FRET efficiency ratio (528/485) decreased over time --- p.55 / Chapter 3.2.3 --- Comparable kcat/Km value of SARS CoV main protease was obtained --- p.56 / Figure 3.5. Catalytic parameter (kcat/ Km) was determined from the slope of straight Line --- p.57 / Chapter 3.3 --- Main protease activity towards substrate variants at different substrate-binding sites (S2'-S2) --- p.58 / Table 3.1. Kinetic parameterrs of 76 substrate variants in descending order --- p.59 / Chapter 3.3.1 --- S2'substrate-binding site --- p.60 / Chapter 3.3.2 --- S1' substrate-b inding site / Chapter 3.3.3 --- S1 substrate-binding site / Chapter 3.3.4 --- S2 substrate-binding site / Figure 3.6. Kinetic analysis of some typical substrate variants against main protease --- p.62 / Figure 3.7. SDS-PAGE analysis of some typical substrate variants against main protease --- p.63 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Quantitative and high-throughput analysis by protein-based FRET assay system --- p.64 / Chapter 4.2 --- Substrate specificities of SARS CoV main protease at S2'-S2 subsites / Chapter 4.2.1 --- β-strand conformation was preferred at S2,subsite / Chapter 4.2.2 --- Residues with small aliphatic side chain were preferred at S1 ´ة subsite --- p.65 / Chapter 4.2.3 --- "Glutamine at S1 subsite was absolutely conserved, but alternatives were disclosed" --- p.66 / Figure 4.1. Glutamine was not absolutely conserved in S1 subsite --- p.67 / Chapter 4.2.4 --- Hydrophilic residues were tolerated at S2 subsite --- p.68 / Figure 4.2. Hydrophilic residues were tolerated at S2 subsite --- p.70 / Table 4.1. Summary of types of residues preferred at individual subsites --- p.71 / Chapter 4.3 --- Predicted conformation of substrate towards SARS CoV main protease at S2' and S1' subsites --- p.72 / Figure 4.3. Small residues were preferred at S1´ة subsite and Val at S2' subsite was more favoured than the native one --- p.73 / Chapter Chapter 5 --- Summary --- p.74 / Chapter Chapter 6 --- Future work --- p.75 / References --- p.76
5

Purification and characterization of a RNA binding protein, the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein.

January 2005 (has links)
by Chan Wai Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 170-185). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.iii / 摘要 --- p.v / Table of Content --- p.vii / Abbreviations --- p.xii / for Nucleotides --- p.xii / for Amino acids --- p.xii / for Standard genetic codes --- p.xiii / for Units --- p.xiii / for Prefixes of units --- p.xiv / for Terms commonly used in the report --- p.xiv / List of Figures --- p.xvii / List of Tables --- p.xxiii / Chapter Chapter I --- Introduction --- p.1 / Chapter 1.1 --- Epidemiology of the Severe Acute Respiratory Syndrome --- p.1 / Chapter 1.2 --- The SARS Coronavirus --- p.3 / Chapter 1.3 --- Cell Biology of Coronavirus Infection and Replication and the Role of Nucleocapsid Protein --- p.9 / Chapter 1.4 --- Recent Advances in the SARS-CoV Nucleocapsid Protein --- p.16 / Chapter 1.5 --- The Sumoylation System --- p.24 / Chapter 1.6 --- Objectives of the Present Study --- p.28 / Chapter Chapter II --- SARS-CoV N protein and Fragment Purification --- p.29 / Chapter 2.1 --- INTRODUCTION --- p.29 / Chapter 2.2 --- METHODOLOGY --- p.31 / Materials --- p.31 / Methods --- p.39 / Chapter 2.2.1 --- Construction of the pMAL-c2P vector --- p.39 / Chapter 2.2.2 --- Sub-cloning of the N protein into expression vectors --- p.42 / Chapter 2.2.2.1 --- Design of primers for the cloning of N protein --- p.43 / Chapter 2.2.2.2 --- DNA amplification using Polymerase Chain Reaction (PCR) --- p.44 / Chapter 2.2.2.3 --- DNA extraction from agarose gel --- p.45 / Chapter 2.2.2.4 --- Restriction digestion of purified PCR product and vectors --- p.46 / Chapter 2.2.2.5 --- Ligation of N protein into expression vectors --- p.47 / Chapter 2.2.2.6 --- Preparation of competent cells --- p.48 / Chapter 2.2.2.7 --- Transformation of plasmids into competent Escherichia coli --- p.49 / Chapter 2.2.2.8 --- Preparation of plasmid DNA --- p.49 / Chapter 2.2.2.8.1 --- Mini-preparation of plasmid DNA --- p.49 / Chapter 2.2.2.8.2 --- Midi-preparation of plasmid DNA --- p.51 / Chapter 2.2.3 --- Expression of tagged and untagged N protein --- p.53 / Chapter 2.2.3.1 --- Preparation of E. coli competent cells for protein expression --- p.53 / Chapter 2.2.3.2 --- Expression of N protein --- p.53 / Chapter 2.2.3.3 --- Solubility tests on the fusion proteins expressed --- p.54 / Chapter 2.2.4 --- Purification of N protein Chromatographic methods --- p.55 / Chapter 2.2.4.1 --- Affinity chromatography --- p.55 / Chapter 2.2.4.1.1 --- Ni-NTA affinity chromatography --- p.55 / Chapter 2.2.4.1.2 --- Glutathione affinity chromatography --- p.56 / Chapter 2.2.4.1.3 --- Amylose affinity chromatography --- p.56 / Chapter 2.2.4.2 --- Ion exchange chromatography --- p.57 / Chapter 2.2.4.2.1 --- Cation exchange chromatography --- p.57 / Chapter 2.2.4.2.2 --- Anion exchange chromatography --- p.58 / Chapter 2.2.4.3 --- Heparin affinity chromatography --- p.58 / Chapter 2.2.4.4 --- Size exclusion chromatography Purification strategies --- p.60 / Chapter 2.2.4.5 --- Purification of His6-tagged N proteins --- p.60 / Chapter 2.2.4.6 --- Purification of MBP-tagged N proteins --- p.60 / Chapter 2.2.4.7 --- Purification of GST-tagged N proteins --- p.61 / Chapter 2.2.4.8 --- Purification of untagged N proteins --- p.61 / Chapter 2.2.5 --- Trypsin digestion assay for the design of stable fragment --- p.64 / Chapter 2.2.6 --- Partial purification of the N protein amino acid residue 214-422 fragment --- p.65 / Chapter 2.2.7 --- Sumoylation of the SARS-CoV N protein --- p.67 / Chapter 2.2.7.1 --- In vitro sumoylation assay --- p.67 / Chapter 2.2.7.2 --- Sample preparation for mass spectrometric analysis --- p.68 / Chapter 2.3 --- RESULTS --- p.70 / Chapter 2.3.1 --- Construction of the vector pMAL-c2P --- p.70 / Chapter 2.3.2 --- "Construction of recombinant N protein-pAC28m, N-protein- pGEX-6P-l,N protein-pMAL-c2E and N protein-pMAL-c2P plasmids" --- p.72 / Chapter 2.3.3 --- Optimization of expression conditions --- p.79 / Chapter 2.3.4 --- Screening of purification strategies --- p.82 / Chapter 2.3.4.1 --- Purification of His6-N protein --- p.82 / Chapter 2.3.4.2 --- Purification of MBP-N protein --- p.84 / Chapter 2.3.4.3 --- Purification of GST-N protein --- p.85 / Chapter 2.3.4.4 --- Purification of untagged N protein --- p.87 / Chapter 2.3.5 --- Limited trypsinolysis for the determination of discrete structural unit --- p.91 / Chapter 2.3.6 --- Partial purification of the N protein 214-422 fragment --- p.94 / Chapter 2.3.7 --- Sumoylation of N protein --- p.97 / Chapter 2.2.7.1 --- Sumoylation site prediction --- p.97 / Chapter 2.2.7.2 --- In vitro sumoylation assay --- p.99 / Chapter 2.2.7.3 --- Mass spectrometric identification of sumoylated SARS-CoV N protein --- p.103 / Chapter 2.4 --- DISCUSSION --- p.109 / Chapter Chapter III --- Characterization of the Nucleic Acid Binding Ability of N protein --- p.119 / Chapter 3.1 --- INTRODUCTION --- p.119 / Chapter 3.2 --- METHODOLOGY --- p.120 / Materials --- p.120 / Methods --- p.124 / Chapter 3.2.1 --- Spectrophotometric Measurement of ratio OD260/ OD280 --- p.124 / Chapter 3.2.2 --- Native gel electrophoresis --- p.124 / Chapter 3.2.3 --- Quantitative determination of nucleic acids content --- p.125 / Chapter 3.2.3.1 --- Dische assay - quantitative determination of DNA content --- p.125 / Chapter 3.2.3.2 --- Orcinol assay - quantitative determination of RNA content --- p.126 / Chapter 3.2.4 --- RNase digestion of the N protein-bound RNA --- p.128 / Chapter 3.2.5 --- Isolation of RNA from purified GST-N proteins --- p.128 / Chapter 3.2.6 --- In vitro transcription of SARS-CoV genomic RNA fragment --- p.129 / Chapter 3.2.7 --- Vero E6 cell line maintenance and total RNA extraction --- p.131 / Chapter 3.2.8 --- Electrophoretic mobility shift assay (EMSA) --- p.131 / Chapter 3.3 --- RESULTS --- p.133 / Chapter 3.3.1 --- Detection of nucleic acids in the purified N proteins byspectrophotometric Measurement of ratio OD260/ OD280 --- p.133 / Chapter 3.3.2 --- Native gel electrophoresis --- p.135 / Chapter 3.3.3 --- Quantitative determination of nucleic acids content in purified GST-N proteins --- p.136 / Chapter 3.3.3.1 --- Dische assay for the determination of DNA --- p.136 / Chapter 3.3.3.2 --- Orcinol assay for the determination of RNA --- p.138 / Chapter 3.3.4 --- RNase digestion treatment --- p.139 / Chapter 3.3.5 --- Extraction of RNA from GST-N proteins --- p.140 / Chapter 3.3.6 --- In vitro transcription of SARS-CoV genomic RNA fragment --- p.142 / Chapter 3.3.7 --- Electrophoretic mobility shift assay (EMSA) --- p.144 / Chapter 3.4 --- DISCUSSION --- p.147 / Chapter Chapter IV --- Discussion --- p.154 / Chapter 4.1 --- "Purity, Aggregation and RNA Binding Property of the SARS-CoV Nucleocapsid Protein" --- p.154 / Chapter 4.2 --- Future perspectives --- p.156 / Chapter 4.2.1 --- Structural study of the SARS-CoV N protein through x-ray crystallography --- p.156 / Chapter 4.2.2 --- Mapping the RNA binding domain in the SARS-CoV N protein --- p.156 / Chapter 4.2.3 --- Determination of aggregation state by lateral turbidimetry analysis --- p.156 / Chapter 4.2.4 --- Exploring protein interacting partners that enhance RNA binding specificity --- p.157 / Appendix --- p.159 / Chapter I. --- Sequence of the SARS-CoV N protein --- p.159 / Chapter II. --- Sequence of the SARS-CoV genome fragment used for RNA binding assay in section 3.37.1 --- p.161 / Chapter III. --- Vector maps --- p.161 / Chapter a) --- Vector map of pACYC177 --- p.161 / Chapter b) --- Vector map and MCS of pET28a --- p.163 / Chapter c) --- Vector map and MCS of pAC28 --- p.164 / Chapter d) --- Vector map and MCS of pGEX-6P-1 / Chapter e) --- Vector map of pMAL-c2X and MCS of pMAL-c2E / Chapter IV. --- Electrophoresis markers --- p.166 / Chapter V. --- SDS-PAGE gel parathion protocol --- p.169 / References --- p.170
6

Nucleic acid based therapeutic approaches /

Elmén, Joacim, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 4 uppsatser.
7

Coronavirus mediated membrane fusion /

Howard, Megan Wilder. January 2008 (has links)
Thesis (Ph.D. in Microbiology) -- University of Colorado Denver, 2008. / Typescript. Includes bibliographical references (leaves 161-183). Free to UCD Anschutz Medical Campus. Online version available via ProQuest Digital Dissertations;
8

Identification of interacting partner(s) of SARS-CoV spike glycoprotein.

January 2006 (has links)
Chuck Chi-pang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 138-160). / Abstracts in English and Chinese. / Thesis Committee --- p.ii / Abstract --- p.iii / 摘要 --- p.v / Contents --- p.vii / List of Figures --- p.xi / List of Tables --- p.xiii / Abbreviations --- p.xiv / Acknowledgement --- p.xviii / Introduction / Chapter 1. --- Background / Chapter 1.1 --- SARS / Chapter 1.1.1 --- Outbreak and Influence --- p.1 / Chapter 1.1.2 --- Clinical Features --- p.4 / Chapter 1.2 --- SARS-CoV / Chapter 1.2.1 --- Genomic Organization --- p.5 / Chapter 1.2.2 --- Morphology --- p.7 / Chapter 1.2.3 --- Phylogenetic Analysis --- p.9 / Chapter 1.3 --- S Glycoprotein / Chapter 1.3.1 --- Functional Roles --- p.11 / Chapter 1.3.2 --- Structure and Functional Domains --- p.12 / Chapter 1.3.3 --- Interacting Partners --- p.15 / Chapter 1.3.4 --- Viral Entry Mechanism --- p.17 / Chapter 1.4 --- Aim of Study / Chapter 1.4.1 --- Mismatch of SARS-CoV Tissue Tropism and Tissue Distribution of ACE2 --- p.20 / Chapter 1.4.2 --- Presence of Other Interacting Partner(s) --- p.22 / Chapter 1.4.3 --- Significance of the Study Materials and Methods --- p.22 / Chapter 2. --- Plasmid Construction / Chapter 2.1 --- Fragment Design / Chapter 2.1.1 --- Functional Domain Analysis --- p.23 / Chapter 2.1.2 --- Secondary Structure and Burial Region Predictions --- p.24 / Chapter 2.2 --- Vector Amplification / Chapter 2.2.1 --- E. coli Strain DH5a Competent Cell Preparation --- p.30 / Chapter 2.2.2 --- Transformation of E. coli --- p.30 / Chapter 2.2.3 --- Small-scale Vector Amplification --- p.31 / Chapter 2.3 --- Cloning of DNA Fragments into Various Vectors / Chapter 2.3.1 --- Primer Design --- p.32 / Chapter 2.3.2 --- DNA Amplification --- p.35 / Chapter 2.3.3 --- DNA Purification --- p.35 / Chapter 2.3.4 --- "Restriction Enzyme Digestion, Ligation and Transformation" --- p.36 / Chapter 2.3.5 --- Colony PCR --- p.37 / Chapter 2.4 --- DNA Sequence Analysis / Chapter 2.4.1 --- Primer Design --- p.35 / Chapter 2.4.2 --- DNA Amplification and Purification for DNA Sequence Analysis --- p.39 / Chapter 2.4.3 --- Sequence Detection and Result Analysis --- p.40 / Chapter 3. --- "Protein Expression, Purification and Analysis" / Chapter 3.1 --- Protein Expression in E. coli / Chapter 3.1.1 --- Molecular Weight and pI Predictions --- p.41 / Chapter 3.1.2 --- Glycerol Stock Preparation --- p.41 / Chapter 3.1.3 --- Protein Expression Induction --- p.41 / Chapter 3.1.4 --- Protein Extraction --- p.42 / Chapter 3.1.5 --- Affinity Chromatography --- p.42 / Chapter 3.1.6 --- Removal of GroEL --- p.43 / Chapter 3.1.7 --- Protein Solubilization and Refolding --- p.44 / Chapter 3.2 --- Protein Expression in P. pastoris / Chapter 3.2.1 --- Large-scale Plasmid Amplification --- p.46 / Chapter 3.2.2 --- Restriction Enzyme Digestion and Ethanol Precipitation --- p.47 / Chapter 3.2.3 --- Preparation of KM71H Competent Cells --- p.47 / Chapter 3.2.4 --- Electroporation --- p.48 / Chapter 3.2.5 --- Colony PCR --- p.48 / Chapter 3.2.6 --- Protein Expression Induction and Time Course Study --- p.49 / Chapter 3.2.7 --- Deglycosylation --- p.49 / Chapter 3.3 --- Protein Analysis / Chapter 3.3.1 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis --- p.50 / Chapter 3.3.2 --- Western Blotting --- p.50 / Chapter 3.3.3 --- Mass Spectrometry --- p.51 / Chapter 3.3.4 --- N-terminal Sequencing --- p.52 / Chapter 3.3.5 --- Size Exclusion Chromatography --- p.52 / Chapter 4. --- Identification of Interacting Partner(s) / Chapter 4.1 --- VeroE6 Preparation / Chapter 4.1.1 --- Cell Culture --- p.53 / Chapter 4.1.2 --- Protein Extraction and Western Blotting --- p.53 / Chapter 4.2 --- Pull-down Assay --- p.54 / Chapter 4.3 --- Two-dimensional Gel Electrophores --- p.is / Chapter 4.3.1 --- Isoelectric Focusing --- p.56 / Chapter 4.3.2 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis --- p.56 / Chapter 4.3.3 --- Silver Staining --- p.57 / Chapter 4.4 --- Mass Spectrometry / Chapter 4.4.1 --- Destaining --- p.58 / Chapter 4.4.2 --- In-gel Digestion --- p.58 / Chapter 4.4.3 --- Desalting by Zip-tip --- p.59 / Chapter 4.4.4 --- Loading Sample --- p.59 / Chapter 4.4.5 --- Peptide Mass Detection and Data Analysis --- p.59 / Results / Chapter 5. --- S Protein Expression / Chapter 5.1 --- Plasmid Construction --- p.61 / Chapter 5.2 --- Molecular Weight and pi Predictions --- p.63 / Chapter 5.3 --- Protein Expression and Optimization in E. coli / Chapter 5.3.1 --- "Comparison of Expression Levels, Solubility and Purities of S Protein Fragments" --- p.64 / Chapter 5.3.2 --- "Alteration of the Solubility in Various Cell Strains, Expression Conditions and Lysis Buffers" --- p.68 / Chapter 5.3.3 --- Identification and Remove of the non-target proteins --- p.72 / Chapter 5.3.4 --- Unfolding and Refolding --- p.79 / Chapter 5.4 --- Protein Expression and Optimization in P. pastoris / Chapter 5.4.1 --- "Expression Levels, Solubility and Purities of Various S Protein Fragments" --- p.85 / Chapter 5.4.2 --- Characterization of De-N-glycosylated Recombinant Proteins --- p.89 / Chapter 6. --- Identification of Interacting partners / Chapter 6.1 --- Practicability of Pull-down Assay / Chapter 6.1.1 --- ACE2 Extraction --- p.95 / Chapter 6.1.2 --- Pull-down of ACE2 by the P. pastoris-expressed recombinant RBD --- p.96 / Chapter 6.2 --- Pull-down Assay and Two-dimensional Gel Electrophoresis --- p.97 / Chapter 6.3 --- Identification of Putative Interacting Partners by MALDI-TOF-TOF --- p.107 / Chapter 7. --- Discussion / Chapter 7.1 --- S Protein Expression in E. coli / Chapter 7.1.1 --- Improving Recombinant Protein Expression Level and Solubility --- p.114 / Chapter 7.1.2 --- S Recombinant Protein Bound by GroEL --- p.117 / Chapter 7.2 --- S Protein Expression in P. pastoris / Chapter 7.2.1 --- Advantages of Using P. pastoris --- p.119 / Chapter 7.2.2 --- Variation of S Fragment Expression Levels --- p.120 / Chapter 7.2.3 --- Sizes of S Protein Fragments --- p.123 / Chapter 7.3 --- Identification of Interacting Partners / Chapter 7.3.1 --- Relationship between S Protein and Putative Interacting Partners --- p.124 / Chapter 7.3.2 --- Failure of Finding ACE2 --- p.125 / Chapter 7.3.2 --- Difficulty in the Identification of Protein Spots --- p.126 / Chapter 7.4 --- Conclusion --- p.131 / Chapter 7.5 --- Future Perspective --- p.132 / Chapter 8. --- Appendix --- p.133 / Chapter 9. --- References --- p.138
9

Synthetic peptide studies on spike glycoprotein and 3C-like protease of the severe acute respiratory syndrome (SARS) coronavirus: perspective for SARS vaccine and drug development.

January 2005 (has links)
Choy Wai Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 98-122). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Acknowledgements --- p.vi / General abbreviations --- p.viii / Abbreviations of chemicals --- p.x / Table of contents --- p.xi / List of figures --- p.xv / List of tables --- p.xviii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Severe acute respiratory syndrome (SARS) - An overview --- p.1 / Chapter 1.1.1 --- Epidemiology of SARS --- p.1 / Chapter 1.1.2 --- Clinical presentation of SARS --- p.2 / Chapter 1.1.3 --- Diagnostic tests of SARS --- p.5 / Chapter 1.1.4 --- Treatment of SARS --- p.7 / Chapter 1.2 --- Severe acute respiratory syndrome coronavirus (SARS- CoV) --- p.8 / Chapter 1.2.1 --- The etiological agent of SARS --- p.8 / Chapter 1.2.2 --- The coronaviruses --- p.9 / Chapter 1.2.3 --- Genome of SARS-CoV --- p.11 / Chapter 1.3 --- Spike (S) glycoprotein of SARS-CoV --- p.14 / Chapter 1.3.1 --- Functions of SARS-CoV S glycoprotein --- p.15 / Chapter 1.3.2 --- Receptors for S glycoprotein of SARS-CoV --- p.17 / Chapter 1.4 --- 3C-like protease (3CLPro) of SARS-CoV --- p.20 / Chapter 1.4.1 --- Extensive proteolytic processing of SARS-CoV replicase polyproteins --- p.20 / Chapter 1.4.2 --- SARS-CoV 3CLPro --- p.21 / Chapter 1.4.3 --- Substrate specificity of SARS-CoV 3CLPro --- p.22 / Chapter 1.5 --- Combating SARS - Vaccine and drug development --- p.24 / Chapter 1.5.1 --- Vaccine development against SARS --- p.24 / Chapter 1.5.2 --- Drug development against SARS --- p.25 / Chapter 1.6 --- Project objectives of this thesis --- p.27 / Chapter 1.6.1 --- Synthetic Peptide Studies on SARS-CoV S glycoprotein --- p.27 / Chapter 1.6.2 --- Synthetic Peptide Studies on SARS-CoV 3CLPro --- p.28 / Chapter 2 --- Materials and Methods --- p.30 / Chapter 2.1 --- Synthetic peptide studies on SARS-CoV S glycoprotein --- p.30 / Chapter 2.1.1 --- Bioinformatics analyses of SARS-CoV S gly- coprotein --- p.30 / Chapter 2.1.2 --- Peptide design and molecular modeling --- p.32 / Chapter 2.1.3 --- Solid phase peptide synthesis (SPPS) --- p.33 / Chapter 2.1.4 --- Peptide conjugation --- p.35 / Chapter 2.1.5 --- Immunization in rabbits and monkeys --- p.36 / Chapter 2.1.6 --- ELISA analysis --- p.37 / Chapter 2.1.7 --- Immunofluorescent confocal microscopy --- p.39 / Chapter 2.2 --- Synthetic peptide studies on SARS-CoV 3CLpro --- p.40 / Chapter 2.2.1 --- Protein expression and purification --- p.40 / Chapter 2.2.2 --- Solid phase peptide synthesis (SPPS) --- p.41 / Chapter 2.2.3 --- Peptide cleavage assay --- p.44 / Chapter 2.2.4 --- Molecular docking --- p.46 / Chapter 3 --- Results --- p.48 / Chapter 3.1 --- Synthetic peptide studies on SARS-CoV S glycoprotein --- p.48 / Chapter 3.1.1 --- General features and structural analyses of the S glycoprotein --- p.48 / Chapter 3.1.2 --- Peptides design and synthesis --- p.53 / Chapter 3.1.3 --- ELISA analysis and immunofluorescent con- focal microscopy --- p.55 / Chapter 3.2 --- Synthetic peptide studies on SARS-CoV 3CLpro --- p.62 / Chapter 3.2.1 --- Substrate specificity of SARS-CoV 3CLPro . . --- p.62 / Chapter 3.2.2 --- Molecular docking of SARS-CoV 3CLPro and peptide substrates --- p.74 / Chapter 4 --- Discussion --- p.78 / Chapter 4.1 --- Synthetic peptide studies on SARS-CoV S glycoprotein --- p.78 / Chapter 4.1.1 --- Synthetic peptides elicited SARS-CoV specific antibodies --- p.78 / Chapter 4.1.2 --- Factors affecting the specificity and antigenic- ity of synthetic peptides --- p.80 / Chapter 4.1.3 --- Next step towards vaccine development --- p.83 / Chapter 4.1.4 --- A synthetic peptide-based approach --- p.84 / Chapter 4.2 --- Synthetic peptide studies on SARS-CoV 3CLpro --- p.86 / Chapter 4.2.1 --- A comprehensive overview of the substrate specificity of SARS-CoV 3CLpro --- p.87 / Chapter 4.2.2 --- Sequence comparison between SARS-CoV 3CLpro cleavage sites --- p.90 / Chapter 4.2.3 --- A rapid and high throughput approach to screen protease substrate specificity --- p.94 / Bibliography --- p.98
10

Complete genome sequencing of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and the functional characterization of the 3a protein. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Coronaviruses are a diverse group of large, single-stranded RNA virus that cause respiratory and enteric diseases in mammalian and avian species. Phylogenetic analysis shows that SARS-CoV is an unique branch of coronavirus showing no close relationship to other groups of coronaviruses. The genome size of SARS-CoV is about 30 kilobase and the genome, like other coronaviruses, is composed of replicase (rep), spike (S), envelope (E), membrane (M) and nucleocapsid (N) and 8 additional unknown open reading frames (ORFs) (ORF 3a, ORF 3b, ORF 6, ORF 7a, ORF 7b, ORF8a, ORF 8b and ORF 9b). The 3a gene, the largest unknown ORF, encodes a viral protein which is predicted to be a transmembrane protein. In this study, we showed that the 3a protein was expressed in SARS patients' lung and intestinal tissues, and it is localized to the endoplasmic reticulum (ER) in 3a-transfected monkey kidney Vero E6 cells. Results from experiments including chromatin condensation, DNA fragmentation and antibody microarray suggest that the 3a protein may trigger apoptosis through a caspase-8-dependent pathway and possibly a PKR-mediated FADD-caspase-8 pathway. Our data show that over-expression of the SARS-CoV protein can induce apoptosis in vitro. / Severe acute respiratory syndrome (SARS), an atypical form of pneumonia, is first recognized in Guangdong Province, China in November 2002 and later spread to Hong Kong in mid February 2003. It is believed that the etiological agent of SARS is a previously unknown coronavirus - SARS-CoV. Over 8,400 cases and 789 deaths were reported to World Health Organization (WHO) from over 28 countries around the world including Hong Kong. Up to now, there are still no efficient antiviral drugs to treat the disease, and the detailed pathology of SARS-CoV infection and the host response to the viral infection are still unknown. During the epidemic, we have done complete genome sequencing for five SARS-CoV isolates and we postulate that at least two SARS-CoV strains with distinct etiological origins exist in the environment during the epidemic. / Law Tit-wan Patrick. / "Aug 2005." / Adviser: Stephen K. W. Tsui. / Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3594. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 156-172). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.

Page generated in 0.0475 seconds