• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 644
  • 132
  • 64
  • 63
  • 15
  • 15
  • 15
  • 12
  • 10
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 1204
  • 143
  • 134
  • 121
  • 93
  • 88
  • 77
  • 74
  • 72
  • 71
  • 70
  • 70
  • 69
  • 68
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

NON-LINEAR MAPS BETWEEN SUBSETS OF BANACH SPACES

Sbeih, Reema 24 September 2009 (has links)
No description available.
162

Selecting stimuli parameters for video quality studies based on perceptual similarity distances

Kumcu, A., Platisa, L., Chen, H., Gislason-Lee, Amber J., Davies, A.G., Schelkens, P., Taeymans, Y., Philips, W. 16 March 2015 (has links)
Yes / This work presents a methodology to optimize the selection of multiple parameter levels of an image acquisition, degradation, or post-processing process applied to stimuli intended to be used in a subjective image or video quality assessment (QA) study. It is known that processing parameters (e.g. compression bit-rate) or techni- cal quality measures (e.g. peak signal-to-noise ratio, PSNR) are often non-linearly related to human quality judgment, and the model of either relationship may not be known in advance. Using these approaches to select parameter levels may lead to an inaccurate estimate of the relationship between the parameter and subjective quality judgments – the system’s quality model. To overcome this, we propose a method for modeling the rela- tionship between parameter levels and perceived quality distances using a paired comparison parameter selection procedure in which subjects judge the perceived similarity in quality. Our goal is to enable the selection of evenly sampled parameter levels within the considered quality range for use in a subjective QA study. This approach is tested on two applications: (1) selection of compression levels for laparoscopic surgery video QA study, and (2) selection of dose levels for an interventional X-ray QA study. Subjective scores, obtained from the follow-up single stimulus QA experiments conducted with expert subjects who evaluated the selected bit-rates and dose levels, were roughly equidistant in the perceptual quality space - as intended. These results suggest that a similarity judgment task can help select parameter values corresponding to desired subjective quality levels. / Parts of this work were performed within the Telesurgery project (co-funded by iMinds, a digital research institute founded by the Flemish Government; project partners are Unilabs Teleradiology, SDNsquare and Barco, with project support from IWT) and the PANORAMA project (co-funded by grants from Belgium, Italy, France, the Netherlands, the United Kingdom, and the ENIAC Joint Undertaking).
163

A test of multiple ionization scaling in Sc

Newcomb, Joal J. January 1979 (has links)
Call number: LD2668 .T4 1979 N48 / Master of Science
164

Cordilleran Forest Scaling Dynamics And Disturbance Regimes Quantified By Aerial LiDAR

Swetnam, Tyson Lee January 2013 (has links)
Semi-arid forests are in a period of rapid transition as a result of unprecedented landscape scale fires, insect outbreaks, drought, and anthropogenic land use practices. Understanding how historically episodic disturbances led to coherent forest structural and spatial patterns that promoted resilience and resistance is a critical part of addressing change. Here my coauthors and I apply metabolic scaling theory (MST) to examine scaling behavior and structural patterns of semi-arid conifer forests in Arizona and New Mexico. We conceptualize a linkage to mechanistic drivers of forest assembly that incorporates the effects of low-intensity disturbance, and physiologic and resource limitations as an extension of MST. We use both aerial LiDAR data and field observations to quantify changes in forest structure from the sub-meter to landscape scales. We found: (1) semi-arid forest structure exhibits MST-predicted behaviors regardless of disturbance and that MST can help to quantitatively measure the level of disturbance intensity in a forest, (2) the application of a power law to a forest overstory frequency distribution can help predict understory presence/absence, (3) local indicators of spatial association can help to define first order effects (e.g. topographic changes) and map where recent disturbances (e.g. logging and fire) have altered forest structure. Lastly, we produced a comprehensive set of above-ground biomass and carbon models for five distinct forest types and ten common species of the southwestern US that are meant for use in aerial LiDAR forest inventory projects. This dissertation presents both a conceptual framework and applications for investigating local scales (stands of trees) up to entire ecosystems for diagnosis of current carbon balances, levels of departure from historical norms, and ecological stability. These tools and models will become more important as we prepare our ecosystems for a future characterized by increased climatic variability with an associated increase in frequency and severity of ecological disturbances.
165

Salt-scaling durability of fly ash concrete

Bortz, Brandon Stallone January 1900 (has links)
Master of Science / Department of Civil Engineering / Kyle Riding / Fly ash is a by-product of coal-fired power plants. This material can be used as a partial cement substitute in portland cement concrete. Use of fly ash can improve concrete durability as well as utilize an industrial by-product that would otherwise be discarded in landfills. However, research on fly ash concrete has shown that in some cases, concrete with high volumes of fly ash can have deicer salt scaling problems. Salt-scaling is the flaking of a concrete surface that when severe enough may result in lower skid resistance and service life of the concrete. In this study, concrete mixtures with six different fly ashes were tested in a laboratory using the ASTM C 672 standard. Curing compound, a wax-based coating sprayed on the fresh concrete surface to reduce evaporation, was used to compare the effects of curing on salt scaling of concrete containing high volumes of fly ash. Different variables measured were the type of fly ash, curing conditions, and total paste volume included in the mix. Results showed that curing compounds will improve the salt-scaling resistance of concrete containing a fly ash that only marginally exhibits salt scaling. However, the salt-scaling performance of concrete that contains fly ash from a source that performs poorly in ASTM C 672 is not markedly improved by using a curing compound. Additionally, results showed that salt-scaling resistance of concrete containing fly ash performs better when the total paste volume is not increased by the addition of fly ash to the mixture. The Kansas Outdoor Concrete Exposure Site (KOCE) at the Kansas State University Civil Infrastructure Systems Laboratory (CISL) was constructed to compare laboratory results to actual field conditions in the future. The site was developed based on experiences from the University of Texas-Austin outdoor exposure site and the CANMET exposure site in Ottawa, Canada. Alika silica reaction blocks were made to develop the procedure for future concrete durability testing at KOCE.
166

Accurate techniques for 2D electromagnetic scattering

Akeab, Imad January 2014 (has links)
This thesis consists of three parts. The first part is an introduction and referencessome recent work on 2D electromagnetic scattering problems at high frequencies. It alsopresents the basic integral equation types for impenetrable objects. A brief discussionof the standard elements of the method of moments is followed by summaries of thepapers.Paper I presents an accurate implementation of the method of moments for a perfectlyconducting cylinder. A scaling for the rapid variation of the solution improves accuracy.At high frequencies, the method of moments leads to a large dense system of equations.Sparsity in this system is obtained by modifying the integration path in the integralequation. The modified path reduces the accuracy in the deep shadow.In paper II, a hybrid method is used to handle the standing waves that are prominentin the shadow for the TE case. The shadow region is treated separately, in a hybridscheme based on a priori knowledge about the solution. An accurate method to combinesolutions in this hybrid scheme is presented.
167

Evaluation of the Allometric Exponents in Prediction of Human Drug Clearance

Zhang, Da 01 January 2014 (has links)
Background. Allometric scaling (AS) is widely used in predicting human clearance (CL) based on animal data. Substantial prediction errors have been commonly observed and various modifications to AS have not provided a broad reliable improvement. In this study, an extensive data set was assembled including animal and human systemic CL and physiochemical properties. The allometric exponents were calculated based on multiple species AS and single-species AS methods. The correlations between the allometic exponents and physiochemical properties were evaluated in an attempt to find covariates that may explain the inter-compound variability in the allometric exponents. Lastly, the statistical approaches in analyzing the allometric function were evaluated with the collected data. Methods. 1- A nonlinear mixed effect modeling (MEM) approach was performed to investigate the central tendency and distribution of AS exponents as well as to identify whether there are any correlations between the allometric exponent, and coefficient, with the physicochemical and drug metabolism and pharmacokinetics (DMPK) properties of the compounds. 2- Single-species AS was performed to estimate the single-species AS exponent distributions and their corresponding central tendencies. The correlation between the estimated single-species AS exponents and the physicochemical and DMPK properties of the compounds were also examined. 3- The methodologies of log-log transformation followed by linear regression (LL-LR) and direct nonlinear regression methods (NLS) with different weighting schemes on the AS power function were investigated. The central tendency and distribution of the allometric exponents were evaluated and compared across methods. Furthermore, the human CL prediction performance was evaluated among methods. Results. The estimated central tendency and distribution of AS exponents from the nonlinear MEM as well as the single-species AS approaches were consistent with literature reports. There were no significant correlations identified between the estimated AS exponents and the physicochemical or DMPK properties. The methods of LL-LR and the NLS with 1/w2 weighting (variance weighted by CL2 during the variance minimization process) results in the most similar allometric exponent with central tendency around 0.668 and provided the best human CL prediction among methods investigated. Conclusion. The knowledge gained in this work by extensive modeling and simulations contributed to a better understanding of the variability in AS exponents and better practice in performing AS in human CL prediction
168

Melting of Ice and Formation of Lateral Cavity during In Situ Burning in Ice-Infested Waters

Farmahini Farahani, Hamed 12 February 2018 (has links)
The ice melting and lateral cavity formation caused by in situ burning (ISB) of liquid fuels in ice-infested waters was studied in order to improve predictions on the removal efficiency of this oil spill mitigation method. For this purpose, several experimental studies were conducted to increase the fundamental understanding of the mechanisms that lead to ice melting and lateral cavity formation. The findings of the experimental studies provided the required knowledge to mathematically formulate the ice melting problem. Mathematical scaling analysis of ice melting during burning of oils in the vicinity of ice was performed to create a tool to estimate the extent of melting that occurs during ISB in ice-infested waters. A series of lab-scale experiments were designed to systematically investigate the ice melting problem. The first set of experiments were conducted in cylindrical shaped ice cavities with a 5.7 cm diameter. Burning of n-octane from ignition to natural extinction and the subsequent geometry change of the ice, fuel thickness, and fuel temperature were measured. The preliminary experimental observations showed that the melting of the ice walls was higher in areas where the fuel layer was in contact with ice compared with places of flame exposure. Based on these observations, a hypothesis that suggested the convective flows in the liquid fuel (driven mainly by surface tension and buoyancy) were contributing in melting of the ice was proposed to explain the origins of the lateral cavity. To evaluate this hypothesis, two dimensionless numbers (Marangoni and Rayleigh) were calculated as the indicators of the mechanisms of convection in the fuel layer. The comparison between the melting speed and these dimensionless numbers indicated surface tension driven flow was dominant while the role of buoyancy was negligible. In another set of experiments, Particle Image Velocimetry (PIV) was used to study the flow structure within the liquid-phase of n-octane pool fire bound on one side by an ice wall. Experiments were conducted in a square glass tray (9.6 cm × 9.6 cm × 5 cm) with a 3 cm thick ice wall placed on one side of the tray. Burning rate, flame height, and melting front velocity were measured to analyze the effect of heat feedback on melting of the ice. The melting rate of the ice increased from 0.6 cm/min for the first 50 seconds after ignition to 1 cm/min for the rest of burning period. Meanwhile, the measurement of the burning rates and flame heights showed two distinctive behaviors; a growth period from self-sustained ignition to the peak mass loss rate (first 50 seconds after ignition) followed by a steady phase from the peak of mass loss rate until the manual extinguishment. Similarly, the flow field measurements by a 2-dimensional PIV system indicated the existence of two different flow regimes. In the moments before ignition of the fuel, coupling of surface tension and buoyancy forces led to a combined one roll structure in the fuel. This was when a single large vortex was observed in the flow field. After ignition the flow field began transitioning toward an unstable flow regime (separated) with an increase in number of vortices around the ice wall. As the burning rate/flame height increased the velocity and evolving flow patterns enhanced the melting rate of the ice wall. Experimentally determined temperature contours showed that a hot zone with thickness of approximately 3 mm was present below the free surface, corresponding to the multi-roll location. The change in the flow field behavior was found to relate to the melting front velocity of ice. To further study the lateral cavity phenomena, a parametric experimental study on melting of ice adjacent to liquids exposed from above to various heat fluxes was conducted in order to understand the role of liquid properties in formation of cavities in ice. Multiple liquids with wide variety and range of thermophysical properties were used in order to identify the key influential properties on melting. The melting rate of the ice and penetration speed of the liquid in a transparent glass tray (70 mm × 70 mm × 45 mm) with a 20 mm thick ice wall (70 mm × 50 mm × 20 mm) was measured. The melting front velocities obtained from experiments were then compared to surface flow velocities of liquids obtained through a scaling analysis of the surface flow to elucidate the influence of the various thermophysical properties of the liquids on ice melting. The surface velocity of the liquids correlated well to the melting front velocities of the ice which showed a clear relationship between the flow velocity and melting front velocity. As the final step of this work, to extend the findings of the experimental studies conducted herein to larger sizes comparable to realistic situations in the Arctic, an order of magnitude scaling analysis was performed to obtain the extent of ice melting. The scaling considered the heat feedback from the flame to fuel surface, the convective heat transfers toward the ice, and the melting energy continuity of ice. The existing experimental data on the size of lateral cavity were also collected and were correlated to the results of the scaling analysis using a nonlinear regression fitting technique. The mathematical correlation that was obtained by the scaling analysis can be used to predict the size of the lateral cavity for a given fuel, pool fire diameter, and burning time. This correlation will provide a predictive tool to estimate the size of a potential lateral cavity formed during ISB of a given spill scenario. In general, the ability to predict the ice melting caused by burning of spilled oil in ice-infested waters is of great practical importance for assessment of the response outcome. This would assist with quantifying the geometry change of the burning medium which in turn will define oil burning rate and extinction condition. Knowledge of burning behavior and extinction condition indicate the burned volume which can directly be used to define the removal effectiveness of ISB. Nevertheless, this analysis was conducted on a generic interaction of oil and ice and the specific details that are observed in actual application of ISB in ice-infested waters were neglected for simplicity. Extending the outcome of this study to more specific (scenario-based) oil-in-ice situation and improving the predictability of the melting correlation with large-scale experiments are the next steps to develop this work.
169

Using TIMSS and PIRLS to Construct Global Indicators of Effective Environments for Learning

Preuschoff, Anna Corinna January 2011 (has links)
Thesis advisor: Ina V.S. Mullis / As an extension of the effort devoted to updating the questionnaires for TIMSS and PIRLS 2011, this dissertation explored a new reporting strategy for contextual questionnaire data. The study investigated the feasibility of constructing "global indicators" from a large number of diverse background variables, which could provide policy makers and practitioners with meaningful information on effective learning environments. Four broad constructs of effective learning environments were derived from the TIMSS and PIRLS Contextual Frameworks for 2011. These were: 1) effective school environments for learning to read, 2) effective home environments for learning to read, 3) effective classroom environments for learning mathematics, and 4) students' motivation to learn mathematics. Using the TIMSS and PIRLS 2011 Frameworks, the conceptual definitions of the constructs were formulated as constructs maps. Next, relevant questionnaire items were identified that addressed each aspect of the construct maps, capitalizing on the full range of background information in the TIMSS 2007 and PIRLS 2006 International Databases. The questionnaire items were used to create sets of variables for scaling, and subsequent to principal component analysis to confirm scale unidimensionality, the variables were combined into 1-Parameter IRT (Rasch) scales. The idea of conveying the meaning of the broad contextual scales through item mapping was explored, as well as reporting country-by-country results on the global scales. The scaling was successful and it was concluded that contextual information could be reported more globally in future cycles of TIMSS and PIRLS. However, the study also demonstrated that it is extremely complicated to choose background constructs at the right level of aggregation for both analysis and reporting. It is difficult to develop scales that summarize data for educational policy makers without loss of vital information. / Thesis (PhD) — Boston College, 2011. / Submitted to: Boston College. Lynch School of Education. / Discipline: Educational Research, Measurement, and Evaluation.
170

Roles of Physical and Perceived Complexity in Visual Aesthetics

Bies, Alexander 06 September 2017 (has links)
The aesthetic response is a multifaceted and subtle behavior that ranges in magnitude from sublime to mundane. Few studies have investigated the more subtle, weak aesthetic responses to mundane scenes. But all aesthetic responses rely upon sensory-perceptual processes, which serve as a crucial first step in contemporary models of the aesthetic response. As such, understanding the roles of perceptual processes in aesthetic responses to the mundane provides insights into all aesthetic responses. Variation in the physical properties of aesthetic objects must cause such responses, but to understand the relationship, such physical properties must be quantified. Then, the mechanism can be determined. Here, I present the theoretical basis and reason for interest in such a test of mundane aesthetic responses in Chapter I. In Chapter II, I present metrics that quantify the physical properties of natural scenes, using computer-generated images that model the complexity of natural scenes to validate these measurement techniques. The methods presented in Chapter II are adapted to analyze the physical properties of natural scenes in Chapter III, extending the analysis to photographs and clarifying the relationship between the properties fractal dimension and spectral scaling decay rate. A behavioral study is presented in Chapter IV that investigates the extent that perceptual responses about complexity serve as an intermediary between aesthetic ratings and the physical properties of the images described in Chapters II and III. Chapter V summarizes the results of these studies and explores future directions. This dissertation includes previously published and unpublished coauthored material.

Page generated in 0.0409 seconds