• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interação da quitosana com surfactante e fenol em meio aquoso : cinética, equilíbrio e calorimetria / Interaction of chitosan with phenol and surfactant in aqueous solution : kinetics, equilibrium and calorimetric

Mota, Jackeline Andrade 23 March 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / With the highly utilization of phenolic compounds and surfactant for several industrial sectors have been increasing the amount of unloading of these pollutant in the effluents, creating pollution. The sorption has getting attention for being an encouraging method for the removing of the chemical pollutants, found on the aqueous effluents. This thesis has the propose of evaluating the capacity of the sorption of the surfactant dodecyl benzene sodium sulfate (SDBS) in crosslinked chitosan beads with Epichlorohydrin (QUIT-EP) and the dichlorophenol-2,6-indophenol (DCFI) found in fish scales (Micropogonias furnieri) Changed with glutaraldehyde and chitosan. The chitosan spheres (QUIT-EP) present 67,8% of anionic surfactant remotion SDBS and the croaker fish scale (ESC-QUIT) removed 70,2% of the DCFI in the aqueous solution, proving the efficiency of these materials in the transference of the studied pollutants. / Com a intensa utilização de compostos fenólicos e surfactantes por vários setores industriais, têm aumentado bastante, as quantidades de descargas destes poluentes em efluentes, gerando poluição. A adsorção, por ser um método promissor, vem sendo muito utilizada na remoção de poluentes químicos presentes em efluentes aquosos. Esta tese teve por objetivo avaliar a capacidade de sorção do surfactante dodecilbenzenossulfonato de sódio (SDBS) em esferas de quitosana reticuladas com epicloridrina (QUIT-EP) e do diclorofenol-2,6-indofenol (DCFI) em escamas do peixe corvina (Micropogonias furnieri) modificadas com glutaraldeído e quitosana. As esferas de quitosana (Quit-EP) apresentaram 67,8% de remoção do surfactante aniônico SDBS e as escamas do peixe corvina (ESC-QUIT) removeram 70,2% do DCFI de soluções aquosas, comprovando que esses materiais são eficientes na remoção dos poluentes estudados.
2

Synthesis of Thermal Interface Materials Made of Metal Decorated Carbon Nanotubes and Polymers

Okoth, Marion Odul 2010 August 1900 (has links)
This thesis describes the synthesis of a low modulus, thermally conductive thermal interface materials (TIM) using metal decorated nanotubes as fillers. TIMs are very important in electronics because they act as a thermally-conductive medium for thermal transfer between the interface of a heat sink and an electronic package. The performance of an electronic package decreases with increasing operating temperature, hence, there exists a need to create a TIM which has high thermal conduction to reduce the operating temperature. The TIM in this study is made from metal decorated multi-walled carbon nanotubes (MWCNT) and Vinnapas®BP 600 polymer. The sample was functionalized using mild oxidative treatment with nitric acid (HNO3) or, with N-Methly-2-Pyrrolidone (NMP). The metals used for this experiment were copper (Cu), tin (Sn), and nickel (Ni). The metal nanoparticles were seeded using functionalized MWCNTs as templates. Once seeded, the nanotubes and polymer composites were made with or without sodium dodecylbenzene sulfonate (SDBS), as a surfactant. Thermal conductivity (k) measurement was carried out using ASTM D-5470 method at room temperature. This setup best models the working conditions of a TIM. The TIM samples made for this study showed promise in their ability to have significant increase in thermal conduction while retaining the polymer’s mechanical properties. The highest k value that was obtained was 0.72 W/m-K for a well dispersed aligned 5 wt percent Ni@MWCNT sample. The Cu samples underperformed both Ni and Sn samples for the same synthesis conditions. This is because Cu nanoparticles were significantly larger than those of Ni and Sn. They were large enough to cause alloy scattering and too large to attach to the nanotubes. Addition of thermally-conductive fillers, such as exfoliated graphite, did not yield better k results as it sunk to the bottom during drying. The use of SDBS greatly increased the k values of the sample by reducing agglomeration. Increasing the amount of metal@MWCNT wt percent in the sample had negative or no effect to the k values. Shear testing on the sample shows it adheres well to the surface when pressure is applied, yet it can be removed with ease.
3

Hydrogely na bázi kladně nabitých poylelektrolytů / Hydrogels based on cationic polyelectrolytes

Jarábková, Sabína January 2016 (has links)
This diploma thesis deals with the study of physical hydrogels based on positively-charged polyelectrolyte. The study is to investigate the interaction of selected positively-charged polyelectrolytes with oppositely charged surfactants in water and in physiologicla saline solution (0.15 M NaCl). The influence of the process for preparing hydrogels. Hydrogels were prepared by dry or wet. Were tested solubilization abilities hydrogels prepared using the hydrophobic dye oil red O were also measured rheological properties of the hydrogels prepared using frequency oscillatory tests and flow tests, depending on the concentration of the polymer or surfactant. For the rheological experiments suggest that chitosan is capable of forming rigid hydrogels with better mechanical properties than the dextran in the presence of both surfactants. Selected samples were also carried out experiments using fluorescent sold prodan, nile red and -naphthol as fluorescent probes. And in selected experiments was determined by solids content in percentage depending on the concentration used polyelectrolytes or surfactants.
4

AN EXPERIMENTAL STUDY OF THE EFFECTS OF SURFACE ROUGHNESS AND SURFACTANT ON POOL BOILING OF NANOFLUIDS

Hamda, Mohamed 11 1900 (has links)
The use of nanofluids as heat transfer fluids has received a lot of attention from the heat transfer research community. Due to the increased thermal conductivity of nanofluids over their base fluids, the number of nanofluids scientific publications increased significantly in the past decade. The effects of the heated surface roughness, nanoparticles and surfactant concentrations on pool boiling of nanofluids have been thoroughly investigated. However, contradicting findings have been observed under what appeared to similar test conditions. In this experimental investigation, two boiling surfaces have been prepared with an average surface roughness of 6 and 60 nm using high precision machining. Alumina Oxide-Water based nanofluids have been used in this investigation. The initial nanoparticle size reported by the manufacturer is 10 nm. The nanoparticles concentration has been kept at 0.05 wt. %. A Sodium Dodecylbenzenesulfonate (SDBS) surfactant has been added to the nanofluids in order to improve its stability. Results showed that the nanofluids boiling performance depended on the boiling surface roughness. The heat transfer coefficient (HTC) obtained in the case of the smooth, mirror finished surface showed an enhancement of 205% with respect to pure water. This trend was reversed in the case of the rough surface which is believed to be due to significant nanoparticles deposition. The HTC obtained with the rough surface was 12% lower than that of pure water. The effect of the surfactant concentration on nanoparticles deposition has been investigated by changing the surfactant concentration from 0.1 to 1.0 wt. %. In the case of the rough surface, the increase of surfactant concentration was found to reduce the formation of the nanoparticles deposition layer. The HTC obtained with the higher surfactant concentration was increased by 46 %. The effect of nanoparticles concentration on the smooth surface shows an unexpected trend of 20 % reduction of the transfer rate of the nanofluids coupled with the increase of the nanoparticle concentration from 0.05 to 0.1 wt. %. However all concentrations showed heat transfer enhancement with respect to pure water. The minimum heat transfer coefficient ratio enhancement was 11 % using 0.1 wt. % nanofluids with respect to pure water. Since nanoparticles deposition has been observed and attributed to micro-layer evaporation, an investigation has been carried out to examine the nucleation process during the pure water and nanofluids pool boiling. The bubble growth rate in both cases was analyzed at different wall degrees of superheat ranging from 104.3 to 105.9 ºC. In addition, the bubble departure diameter and frequency have been measured and compared for both cases. The nanofluid bubble size was about 80 % smaller than that of pure water. The nanofluid bubble departure had almost constant frequency of 500 Hz over the range of wall superheats whereas the maximum bubble frequency in the case of pure water was 22.72 Hz. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0174 seconds