• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 261
  • 65
  • 51
  • 32
  • 26
  • 16
  • 15
  • 13
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 628
  • 333
  • 140
  • 129
  • 62
  • 56
  • 45
  • 43
  • 43
  • 41
  • 39
  • 38
  • 37
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Predictions of Flexural Behaviour of Built-Up Cold-Formed Steel Sections

Sultana, Papia January 2007 (has links)
In recent years, light gauge cold-formed steel members have been used extensively in low and mid- rise residential building construction. In cold-formed steel design there are several applications where built-up box girders are used to resist load induced in a structure when a single section is not sufficient to carry the design load. The cold-formed steel box girders may be subjected to eccentric loading when the web of one of the sections receives the load and transfers it through the connection to another section. There may be an unequal distribution of load in built-up girder assemblies loaded from one side. In the current North American Specification for the Design of Cold-Formed Steel Structural Members (CSA-S136-01, 2001), there is no guideline or design equation to calculate the flexural capacity of this type of section. AISI cold-formed steel framing design guide (2002) has recommended that the moment of resistance and inertia of the built-up section are the simple addition of the component parts, based on deflection compatibility of the two sections. However, this design approximation has not been justified by any experimental or numerical study. Very little information was found in literature about this topic. The objective of this study is the investigation of the flexural behaviour of built-up box girders assembled from cold-formed stud and track sections when subjected to eccentric loading. Finite element analysis is conducted for this purpose, being much more economical than expensive experimental testing. Detailed parametric studies are carried out to identify the factors affecting the flexural capacity of built-up cold-formed steel sections. The parametric results are used to develop a design equation for calculating the flexural capacity of built-up cold-formed steel sections.
122

Neutron-Induced Partial Gamma-Ray Cross-Section Measurements on Uranium

Hutcheson, Anthony Lloyd 07 August 2008 (has links)
<p>Precision measurements of 238U(n,n'g) and 235,238U(n,2ng) partial cross sections have been performed at Triangle Universities Nuclear Laboratory (TUNL) to improve crucial data for the National Nuclear Security Administration's (NNSA) Stockpile Stewardship Program. Accurate neutron-induced reaction cross-section data are required for many practical applications, including nuclear energy and reactor technology, nuclear transmutation, and explosive nuclear devices. Due to the cessation of underground nuclear testing in the early 1990s, understanding of the performance of nuclear devices is increasingly dependent on precise model calculations which are, in turn, themselves reliant on accurate reaction data to serve as benchmarks for model codes. Direct measurement of (n,n') and (n,2n) reaction cross sections for uranium is extremely difficult due to large neutron background from fission and very close nuclear level spacing. Previous direct measurements of the cross sections are incomplete and/or discrepant over the energy range of interest. However, the (n,n'g) and (n,2ng) partial gamma-ray cross-section data obtained in the present work can be combined with model calculations to infer total (n,n') and (n,2n) reaction-channel cross sections.</p><p>A pulsed and monoenergetic neutron beam was used in combination with high-resolution gamma-ray spectroscopy to measure these partial cross sections for incident neutron energies between 5 and 14 MeV. Gamma-ray yields were measured with high-purity germanium (HPGe) clover and planar detectors. Neutron fluxes were determined from the well-measured 2+ -> 0+ transition in 56Fe to be on the order of 10^4 n/cm^2/s. Detector efficiency and attenuation of gamma rays in the target were simulated using the MCNPX Monte-Carlo radiation transport code.</p><p>Measured partial cross sections were compared with previous measurements and calculations from GNASH and TALYS Hauser-Feshbach statistical-model codes. Results are generally in good agreement with existing data and provide cross-section data for transitions in energy regions where none previously existed. Total reaction-channel cross sections are inferred from statistical-model calculations and compared with existing direct measurement data.</p> / Dissertation
123

Automatic target recognition using passive radar and a coordinated flight model

Ehrman, Lisa M. 01 June 2004 (has links)
No description available.
124

Sur le calcul des pièces coniques de révolution travaillant à la flexion

Ma, Min-Yuan. Esclangon, Felix Kravtchenko, Julien January 2008 (has links)
Reproduction de : Thèse de docteur-ingénieur : mathématiques : Grenoble 1 : 1956. / Titre provenant de l'écran-titre. Bibliogr. p. 91.
125

Automatic target recognition using passive radar and a coordinated flight model

Ehrman, Lisa M., January 2004 (has links) (PDF)
Thesis (M.S. in E.C.E)--School of Electrical and Computer Engineering, Georgia Institute of Technology, 2004. Directed by Aaron Lanterman. / Includes bibliographical references (leaves 48-49).
126

Electron capture into excited states by helium ions

Wolterbeek Muller, Lambert, January 1971 (has links)
Thesis--Rijksuniversiteit te Leiden. / Summary also in Dutch. eContent provider-neutral record in process. Description based on print version record. Includes bibliographies.
127

Characteristics of front-page medical news

Lai, Yuk-yeu, William., 賴玉耀. January 2010 (has links)
published_or_final_version / Journalism and Media Studies Centre / Doctoral / Doctor of Philosophy
128

On Pascal's hexagon

Lee, Daniel Pryor, 1921- January 1954 (has links)
No description available.
129

Photodisintegration of 3He with Double Polarizations

Laskaris, Georgios January 2015 (has links)
<p>The first measurements of the two- and three-body photodisintegration of longitudinally</p><p>polarized 3He with a circularly-polarized gamma-ray beam were carried out at the High Intensity gamma-ray Source facility located at Triangle Universities Nuclear Laboratory (TUNL). A high pressure 3He target, polarized via spin exchange optical pumping with alkali metals, was used in the experiments. The protons from the two-body photodisintegration experiment were detected using seventy two silicon surface barrier detectors of various thicknesses while the neutrons from the three-body photodisintegration were detected with sixteen 12.7 cm diameter liquid scintillator detectors. The spin-dependent cross sections and the contributions from the two- and three-body photodisintegration to the 3He Gerasimov-Drell-Hearn sum rule integrand were extracted and compared with state-of-the-art three-body calculations at the incident photon energies of 29.0 MeV (two-body) and 12.8, 14.7, and 16.5 MeV (three-body).</p><p>These are the first measurements of the contributions of the two- and three-body photodisintegration of 3He to the GDH integrand. These measurements were found to be in good agreement with the theoretical calculations which include the Coulomb interaction between protons in the final state. They also reveal-for the first time-the importance of the three-nucleon forces and the relativistic single-nucleon charge corrections which are responsible in the calculations for the observed difference</p><p>between the spin-dependent cross sections.</p> / Dissertation
130

Plastic Interaction Relations for Elliptical and Semi-Elliptical Hollow Sections

Nowzartash, Farhood 31 May 2011 (has links)
The advancement of the structural steel manufacturing industry has led to the recent emergence of steel members with Elliptical Hollow Sections (EHS) and Semi Elliptical Hollow Sections (SEHS). Although these sections are gaining popularity among architects, the lack of design guidelines specifically tailored towards these sections inhibits their efficient structural use. Within this context, this thesis provides several steps towards the development of such guidelines. A review of the manufacturing process of hot-rolled steel sections is conducted with emphasis on hollow structural sections. The main factors affecting the formation of residual stresses during cooling of the sections are discussed. Lower bound plastic interaction relations for EHS subjected to combinations of axial force, bi-axial bending moments and torsion are then derived. The formulation is based on the lower bound theorem of plasticity and the maximum distortional energy density yield criterion. Its applicability for conducting the cross-sectional interaction check in structural steel design problems is illustrated through a practical example. A simplified and conservative interaction equation is then proposed based on curve fitting of the results of the lower bound solution. Upper bound interaction relations are next developed for EHS subjected to combinations of axial force, bi-axial bending moments, torsion and bimoments. The formulation is based on kinematically admissible strain fields within the context of the upper bound theorem of plasticity. The interaction relations derived successfully capture the effect of confining radial strains present at welded end sections, as well as sections that are free to deform in the radial direction away from end welded sections. An iterative solution technique is developed to solve the resulting highly non-linear system of interaction relations. The effects of residual stresses and initial imperfections on axial compressive resistance of hot-rolled EHS are then incorporated into the lower bound interaction relations. Towards that goal, the thermo-mechanical properties of steel were extracted from the literature. A thermo-mechanical finite element model was developed for prediction of residual stresses in rolled sections. The validity of the model was assessed by comparison against residual stress measurements available in the literature. The model is then applied to predict the residual stresses in hot-rolled EHS. A series of geometric and material nonlinear finite element analyses is conducted on columns of EHS sections. The analyses include predicted residual stresses and initial out-of-straightness imperfections in order to determine the inelastic buckling capacity of EHS members and generate column curves for EHS sections. The column curves are subsequently compared to those based on Canadian, American and European design codes. Two column curve equations are proposed in a format similar to that of the Canadian Standards for buckling about major and minor axes. The column curves were subsequently combined with the interaction relations developed to provide design rules for EHS members under combined loads. The last contribution of the thesis provides a formulation of lower bound interaction relations for SEHS subject to combinations of axial force, bi-axial bending moments and torsion. An iterative scheme for solving the parametric form of the interaction relations is developed and a grid of admissible stress resultant combinations is generated. A series of trial functions are fitted to the grid of internal force combinations and two simplified and conservative interaction equations are proposed.

Page generated in 0.459 seconds