• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 261
  • 65
  • 51
  • 32
  • 26
  • 16
  • 15
  • 13
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 628
  • 333
  • 140
  • 129
  • 62
  • 56
  • 45
  • 43
  • 43
  • 41
  • 39
  • 38
  • 37
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Contribution à l'amélioration des données nucléaires neutroniques du sodium pour le calcul des réacteurs de génération IV

Archier, Pascal 14 September 2011 (has links) (PDF)
Les critères de sûreté exigés pour les réacteurs rapides au sodium de Generation IV (RNR-Na) se traduisent par la nécessité d'incertitudes réduites et maîtrisées sur les grandeurs neutroniques d'intérêt. Une part de ces incertitudes provient des données nucléaires et, dans le cas des RNR-Na, des données nucléaires du sodium, qui présentent des différences significatives entre les bibliothèques internationales (JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0). L'objectif de cette thèse est d'améliorer la connaissance sur les données nucléaires du sodium afin de mieux calculer les paramètres neutroniques des RNR-Na et fournir des incertitudes fiables. Après un état des lieux des présentes données du Na23, l'impact des différences est quantifié notamment sur les effets en réactivité de vidange du sodium, calculés avec des outils neutroniques déterministe et stochastique. Les résultats montrent qu'il est nécessaire de ré-évaluer entièrement les données nucléaires du sodium. Plusieurs développements ont été effectués dans le code d'évaluation Conrad, pour intégrer de nouveaux modèles de réactions nucléaires et leurs paramètres ainsi que pour permettre de procéder à des ajustements avec des mesures intégrales. Suite à ces développements, l'analyse des données différentielles et la propagation des incertitudes expérimentales avec Conrad ont été réalisées. Le domaine des résonances résolues a été étendu à 2 MeV et le domaine du continuum débute directement au-delà de cette énergie. Une nouvelle évaluation du Na23 et les matrices de covariances multigroupes associées ont été générées pour de futurs calculs d'incertitudes. La dernière partie de la thèse se focalise sur le retour des expériences intégrales de vidange du sodium, par des méthodes d'assimilation de données intégrales, afin de réduire les incertitudes sur les sections efficaces du sodium. Ce document se clôt sur des calculs d'incertitudes pour des RNR-Na de type industriel, qui montrent une meilleure prédiction de leurs paramètres neutroniques avec la nouvelle évaluation.
272

A study of the gatekeeping role of chief photographers : the social identity theory and in-group bias in the assignment of sports photos

Bogue, Elinor E. January 2009 (has links)
Access to abstract permanently restricted to Ball State community only / Access to thesis permanently restricted to Ball State community only / Department of Journalism
273

Photographic disconnect : examining the divide between newspaper photographers and designers on the matter of digital alteration of photographs on the front page

Sparrow, Ryan J. January 2008 (has links)
This study explores the differences in attitude held by newspaper photographers and designers concerning the acceptability of digitally altering front-page photographs. It takes its findings from a summer 2006 survey that asked these two newsroom groups to rate their acceptance of certain common techniques used to change photographs from their original forms. Their answers revealed that designers are generally more accepting of altered photographs than their photographer colleagues. Also, photographers are more likely to find acceptable those photographs altered for technical reasons than for aesthetic ones. Least acceptable to photographers, this study finds, are alterations that affect a photograph's content. / Department of Journalism
274

Few group cross section representation based on sparse grid methods / Danniëll Botes

Botes, Danniëll January 2012 (has links)
This thesis addresses the problem of representing few group, homogenised neutron cross sections as a function of state parameters (e.g. burn-up, fuel and moderator temperature, etc.) that describe the conditions in the reactor. The problem is multi-dimensional and the cross section samples, required for building the representation, are the result of expensive transport calculations. At the same time, practical applications require high accuracy. The representation method must therefore be efficient in terms of the number of samples needed for constructing the representation, storage requirements and cross section reconstruction time. Sparse grid methods are proposed for constructing such an efficient representation. Approximation through quasi-regression as well as polynomial interpolation, both based on sparse grids, were investigated. These methods have built-in error estimation capabilities and methods for optimising the representation, and scale well with the number of state parameters. An anisotropic sparse grid integrator based on Clenshaw-Curtis quadrature was implemented, verified and coupled to a pre-existing cross section representation system. Some ways to improve the integrator’s performance were also explored. The sparse grid methods were used to construct cross section representations for various Light Water Reactor fuel assemblies. These reactors have different operating conditions, enrichments and state parameters and therefore pose different challenges to a representation method. Additionally, an example where the cross sections have a different group structure, and were calculated using a different transport code, was used to test the representation method. The built-in error measures were tested on independent, uniformly distributed, quasi-random sample points. In all the cases studied, interpolation proved to be more accurate than approximation for the same number of samples. The primary source of error was found to be the Xenon transient at the beginning of an element’s life (BOL). To address this, the domain was split along the burn-up dimension into “start-up” and “operating” representations. As an alternative, the Xenon concentration was set to its equilibrium value for the whole burn-up range. The representations were also improved by applying anisotropic sampling. It was concluded that interpolation on a sparse grid shows promise as a method for building a cross section representation of sufficient accuracy to be used for practical reactor calculations with a reasonable number of samples. / Thesis (MSc Engineering Sciences (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2013.
275

Few group cross section representation based on sparse grid methods / Danniëll Botes

Botes, Danniëll January 2012 (has links)
This thesis addresses the problem of representing few group, homogenised neutron cross sections as a function of state parameters (e.g. burn-up, fuel and moderator temperature, etc.) that describe the conditions in the reactor. The problem is multi-dimensional and the cross section samples, required for building the representation, are the result of expensive transport calculations. At the same time, practical applications require high accuracy. The representation method must therefore be efficient in terms of the number of samples needed for constructing the representation, storage requirements and cross section reconstruction time. Sparse grid methods are proposed for constructing such an efficient representation. Approximation through quasi-regression as well as polynomial interpolation, both based on sparse grids, were investigated. These methods have built-in error estimation capabilities and methods for optimising the representation, and scale well with the number of state parameters. An anisotropic sparse grid integrator based on Clenshaw-Curtis quadrature was implemented, verified and coupled to a pre-existing cross section representation system. Some ways to improve the integrator’s performance were also explored. The sparse grid methods were used to construct cross section representations for various Light Water Reactor fuel assemblies. These reactors have different operating conditions, enrichments and state parameters and therefore pose different challenges to a representation method. Additionally, an example where the cross sections have a different group structure, and were calculated using a different transport code, was used to test the representation method. The built-in error measures were tested on independent, uniformly distributed, quasi-random sample points. In all the cases studied, interpolation proved to be more accurate than approximation for the same number of samples. The primary source of error was found to be the Xenon transient at the beginning of an element’s life (BOL). To address this, the domain was split along the burn-up dimension into “start-up” and “operating” representations. As an alternative, the Xenon concentration was set to its equilibrium value for the whole burn-up range. The representations were also improved by applying anisotropic sampling. It was concluded that interpolation on a sparse grid shows promise as a method for building a cross section representation of sufficient accuracy to be used for practical reactor calculations with a reasonable number of samples. / Thesis (MSc Engineering Sciences (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2013.
276

Nested pessimistic transactions for both atomicity and synchronization in concurrent software

Chammah, Tarek January 2011 (has links)
Existing atomic section interface proposals, thus far, have tended to only isolate transactions from each other. Less considered is the coordination of threads performing transactions with respect to one another. Synchronization of nested sections is typically relegated to outside of and among the top-level flattened sections. However existing models do not permit the composition of even simple synchronization constructs such as barriers. The proposed model integrates synchronization as a first-class construct in a truly nested atomic block implementation. The implementation is evaluated on quantitative benchmarks, with qualitative examples of the atomic section interface???s expressive power compared with conventional transactional memory implementations.
277

Distortional Lateral Torsional Buckling Analysis for Beams of Wide Flange Cross-sections

Hassan, Rusul 09 April 2013 (has links)
Structural steel design standards recognize lateral torsional buckling as a failure mode governing the capacity of long span unsupported beams with wide flange cross-sections. Standard solutions start with the closed form solution of the Vlasov thin-walled beam theory for the case of a simply supported beam under uniform moments, and modify the solution to accommodate various moment distributions through moment gradient expressions. The Vlasov theory solution is based on the assumption that cross-sectional distortional effects have a negligible effect on the predicted elastic critical moment. The present study systematically examines the validity of the Vlasov assumption related to cross-section distortion through a parametric study. A series of elastic shell finite element eigen-value buckling analyses is conducted on simply supported beams subject to uniform moments, linear moments and mid span point loads as well as cantilevers subject to top flange loading acting at the tip. Cross-sectional dimensions are selected to represent structural steel cross-section geometries used in practice. Particular attention is paid to model end connection details commonly used in practice involving moment connections with two pairs of stiffeners, simply supported ends with a pair of transverse stiffeners, simply supported ends with cleat angle details, and built in fixation at cantilever roots. The critical moments obtained from the FEA are compared to those based on conventional critical moment equations in various Standards and published solutions. The effects of web slenderness, flange slenderness, web height to flange width ratio, and span to height ratios on the critical moment ratio are systematically quantified. For some combinations of section geometries and connection details, it is shown that present solutions derived from the Vlasov theory can overestimate the lateral torsional buckling resistance for beams.
278

Study of the effect of phase on the stopping power and straggling for low-energy protons in organic gases and their polymers

Mohammadi, Ahmad January 1984 (has links)
No description available.
279

Electron loss and excitation in atom-atom collisions

Spratt, David James January 1999 (has links)
No description available.
280

Parallel R-matrix computation

Heggarty, Jonathan W. January 1999 (has links)
No description available.

Page generated in 0.0526 seconds