• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protection, Automation, and Frequency Stability Analysis of a Laboratory Microgrid System

Osborn, Christopher Eric 01 May 2018 (has links)
Due to increasing changes in the power industry, Cal Poly San Luis Obispo's electrical engineering department introduced a set of initiatives to adequately equip students with the skills and knowledge to interact with new technologies. Specifically, the department proposed a microgrid and power systems protection and automation laboratory to strengthen students' knowledge of microprocessor-based relays. This paper outlines a microgrid laboratory system that fulfills the initiative's goal and proposes a collection of laboratory experiments for inclusion in a new laboratory course at Cal Poly. The experiments provide students with practical experience using Schweitzer Engineering Laboratory (SEL) relays and teach fundamental concepts in semi-automated generator synchronization and power system data acquisition. The microgrid laboratory system utilizes SEL relays and a centralized SEL controller to automate frequency regulation through load shedding, power factor correction, generator and utility synchronization, and relay protection group switching.
2

Design of a differential protection scheme for a 345 kV transmission line using SEL 311L relays

Subrahmanyam, Tarangini Karoor January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Noel Schulz / Transmission networks are an important part of an electric power system. They help transfer power from the point of generation (power plants) to the substation. In order to minimize losses during power transfer, the lines are operated at high voltages. The high voltage lines not only have a high power transmission capacity, but they are also prone to faults of larger magnitudes. Thus the occurrence of such faults results in a need for the faults to be cleared quickly in order to limit damage caused to the system. Hence, relays are installed at the Buses to provide protection to the lines. Transmission lines in a power system are most commonly protected by distance relays that use directional comparison schemes. However, due to the simplicity of line differential schemes, there has been an increase in the use of differential relays for complex networks. Moreover, since the relays require only current as the operating parameter, their settings can be determined easily. This report discusses the design of a line current differential protection scheme for a transmission line using SEL 311L relays. The relay settings have been determined and then tested for seven fault scenarios, three internal fault points and four external fault points. To set and test the relays, AcSELerator Quickset, SEL 5030 and PowerWorld programs have been used. Real life power system is simulated with the help of SEL AMS (Adaptive Multichannel Source) that acts as the source to provide the required data to the relays. The relays trip and open the breaker contacts for an internal fault. During an external fault, the relays do not trip and the breaker contacts remain closed. The response of the relays in case of communication failures has been discussed.

Page generated in 0.0403 seconds