• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diffusion d'îlots génomiques de multirésistance aux antibiotiques chez Proteus mirabilis / Spread of multiresistance genomic islands in Proteus Mirabilis

Schultz-Ascensio, Eliette 28 March 2018 (has links)
La résistance aux antibiotiques est une menace non négligeable pour la santé publique. Ces résistances peuvent être portées par différents supports dont les îlots génomiques. Il a été démontré que les îlots génomiques Salmonella Genomic Island 1 (SGI1) et Proteus Genomic Island 1 (PGI1) sont des acteurs importants de la multirésistance aux antibiotiques. Quelques variants de SGI1 et PGI1 ont déjà été décrits au sein de l’espèce P. mirabilis. Dans ce contexte, ce projet de thèse se proposait d’approfondir notre connaissance de la situation épidémiologique de la diffusion de SGI1 et PGI1 chez P. mirabilis chez l’homme et l’animal en France, en ce qui concerne la diversité des isolats, mais aussi celles des variants de SGI1/PGI1. En parallèle, une autre volonté a été d’identifier d’autres facteurs et acteurs permettant l’acquisition de gènes de résistances d’intérêt au sein des Morganellaceae (β-Lactamases à Spectre Etendu, céphalosporinase AmpC, Plasmid-mediated Quinolone Resistance...). Au final, cette étude a permis en outre de révéler les premiers cas de SGI1 et PGI1 chez P. mirabilis chez l’animal en France. De nouveaux variants de SGI1 ont également été mis en évidence. Et pour la première fois, SGI1 a été décrit chez M. morganii, une autre espèce d’entérobactérie. / The antibiotic resistance is a major treat for public health. These resistances can be hold by different element and genomic islands are one of them. Salmonella Genomic Island 1 (SGI1) and Proteus Genomic Island 1 (PGI1) are important genetic elements for the antibiotic resistance. A few SGI1 and PGI1 variants were already described in P. mirabilis. It is in this context that this thesis project aimed to improve our knowledge about the epidemiological spread of SGI1 and PGI1 in P. mirabilis in humans but also in animals in France (diversity of isolates and SGI1/PGI1 variants). Moreover, another wish was to identify other factors and actors for the acquisition of antibiotic resistance in the Morganellaceae tribe (Extended-Spectrum β-Lactamases, AmpC cephalosporinase, Plasmid-mediated Quinolone Resistance…). Finally, this study revealed the first cases of SGI1 and PGI1 in P. mirabilis in animals in France. New SGI1 variants were also described. And for the very first time, SGI1 was found in M. morganii, another entrobacterial species.
2

Mécanismes moléculaires impliqués dans le transfert horizontal de l'îlot génomique de multi-résistance aux antibiotiques Salmonella Genomic Island 1 / Molecular mechanisms involved in the horizontal transfer of the multidrug resistance genomic island Salmonella Genomic Island 1

Douard, Grégory 01 June 2011 (has links)
L’îlot génomique SGI1 est un élément intégratif mobilisable identifié initialement chez le clone épidémique penta-résistant de Salmonella enterica Typhimurium DT104. La présence de SGI1 chez différents sérotypes de Salmonella et chez Proteus mirabilis a conduit à démontrer son transfert conjugatif. SGI1 s’excise du chromosome pour former un intermédiaire circulaire capable d’être mobilisé en trans par un élément conjugatif corésident. Dans la bactérie réceptrice, SGI1 s’intègre de manière site-spécifique grâce à l’intégrase codée par l’îlot. L’objectif de ce travail était d’étudier les mécanismes impliqués dans la mobilisation de l’îlot génomique. Des expériences de mobilisation de SGI1 avec des plasmides de différents groupes d’incompatibilités ont montré que seuls les plasmides de résistance du groupe IncA/C étaient capables de mobiliser l’îlot génomique. L’origine de transfert (oriT) de SGI1 a été identifiée sur un fragment de 135 pb capable de rendre mobilisable un plasmide non mobile. La diminution du transfert de SGI1 dépourvu de ce fragment a permis de confirmer la localisation de l’oriT. L’implication de l’ORF S020 dans le transfert de l’îlot a aussi été démontrée. Une autre région comprise entre les ORF S013 et S019 contient un élément indispensable au transfert de l’îlot. L’identification des différents composants moléculaires impliqués dans la mobilisation de SGI1 est une étape importante pour comprendre la dissémination de l’îlot génomique. / The Salmonella genomic island 1 is an integrative mobilizable element (IME) originally identified in epidemic multidrug-resistant Salmonella enterica Typhimurium DT104. The occurrence of SGI1 in several S. enterica serovars and recently in Proteus mirabilis has led to demonstrate its horizontal transfer. SGI1 excises from the donor chromosome to form a circular extrachromosomal intermediate that can be mobilized in trans to the recipient. SGI1 integrates site-specifically into the chromosome at the 3’ end of the trmE gene. Here, we have studied the mechanism of conjugative transfer of SGI1. First, we have shown by SGI1 mobilization assays with different plasmid incompatibility groups that only multidrug-resistance IncA/C plasmids were able to mobilize SGI1. The transfer origin of SGI1 has been located on a 135 bp DNA region by mobilization assays of a non mobile plasmid containing this region. The decrease in transfer frequency of a SGI1 lacking this putative oriT region confirmed this location. The involvement in the SGI1 transfer of the S020 ORF coding for a putative integrase was also demonstrated. One other region located between S013-S019 ORFs contained an element required for SGI1 mobilization. The identification of the different molecular components involved in SGI1 mobilization is an important step for understanding the dissemination of the genomic island.
3

Stabilité de Salmonella Genomic Island1 et son incompatibilité avec les plasmides IncA/C / Stability of salmonella genomic Island 1 and its incompatibility with IncA/C plasmids

Huguet, Kévin 09 November 2016 (has links)
L'îlot génomique Salmonella Genomic Island 1 (SGI1) est un élément intégratif et mobilisable, support de nombreux gènes de résistance aux antibiotiques, et identifié chez de nombreux genres bactériens. Le transfert de SGI1 requiert spécifiquement la présence d'un plasmide conjugatif du groupe d'incompatibilité IncA/C. Les régulateurs globaux AcaCD des plasmides IncA/C activent l’excision de SGI1 qui, une fois sous forme d’un intermédiaire extrachromosomique circulaire, va pouvoir être transféré en utilisant la machinerie de conjugaison encodée par les plasmides IncA/C (mobilisation conjugative en trans). Depuis la description de SGI1, plusieurs études ont relaté une apparente stabilité de SGI1 au cours des générations bactériennes. Cependant, des observations préliminaires indiquaient des difficultés de cohabitation entre SGI1 et les plasmides IncA/C. L’objectif de ce travail était d’étudier la stabilité de SGI1 et sa compatibilité avec les plasmides conjugatifs IncA/C dont dépend sa mobilité. L’opéron putatif S026- S025 de SGI1 a été identifié comme constituant un système Toxine-Antitoxine (TA) qui a été appelé sgiAT. Le rôle de ce système TA dans la stabilité de SGI1 a été mis en évidence en présence d'un plasmide IncA/C. De plus, l’incompatibilité entre SGI1 et les plasmides IncA/C a été démontrée expérimentalement pour la première fois. La stabilité de SGI1 est liée à son intégration chromosomique. Cependant, lorsque SGI1 est excisé du chromosome et donc vulnérable (il peut être perdu), c’est-à-dire en présence d’un plasmide IncA/C, le système TA sgiAT joue un rôle important dans le maintien de SGI1 dans les populations bactériennes. / The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires specifically the presence of a conjugative IncA/C plasmid to be excised and transfered by conjugation (mobilization in trans). Preliminary observations suggest stable maintenance of SGI1 in the bacterial host but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed.
4

Les ilôts de résistance de type SGI1 (Salmonella Genomic Island 1) et apparentés dans des souches humaines cliniques de Porteus mirabilis et Salmonella enterica / Salmonella Genomic Island 1 (SGI1) and relative genomic islands from clinical Proteus mirabilis and Salmonella enterica isolates

Goulard de Curraize, Claire 01 December 2017 (has links)
Salmonella genomic island 1 (SGI1) est un élément intégratif mobilisable décrit pour la 1ère fois dans un clone penta-résistant de Salmonella Typhimurium DT104. Depuis, plusieurs variants et îlots apparentés (Proteus genomic island 1 (PGI1)) ont été rapportés dans différents sérotypes de Salmonella enterica et chez Proteus mirabilis. Ces îlots de résistance sont constitués d’un squelette plutôt stable et d’une région de multirésistance (MDR) variable. L’objectif de cette thèse était d’étudier ces îlots dans des souches cliniques de P. mirabilis (CHU de Dijon et Lariboisière à Paris) et de S. enterica (CHU de Dijon). La prévalence de ces îlots variait de 5 à 16% chez P. mirabilis ayant acquis au moins une résistance. L’étude génotypique a montré une grande diversité des souches mais également la présence de quelques clones porteurs de SGI1 ou PGI1. Le séquençage de ces îlots a mis en évidence la grande plasticité des régions MDR souvent en lien avec des mouvements d’IS26. Ces dernières permettent à la région MDR de s’enrichir en nouveaux gènes de résistance (ex : blaCTX-M-15) présents dans des structures antérieurement décrites sur des plasmides de clones d’entérobactéries répandus. De nombreuses espèces d’entérobactéries porteuses d’un plasmide IncA/C sont capables d’acquérir par conjugaison un îlot provenant d’une autre entérobactérie. Cet îlot s’intègre alors au niveau du site chromosomique spécifique (trmE). Sous pression antibiotique et en présence d’un plasmide IncA/C, les souches peuvent être complètement excisées de leur îlot. Ainsi, ces îlots sont des interfaces de résistance à la fois stables mais aussi dynamiques favorisant la dissémination des gènes de résistance. Une virulence accrue par la présence de ces îlots chez S. enterica n’a pas pu être confirmée ni dans le modèle d’infection expérimentale de C. elegans, ni dans une étude rétrospective chez l’homme (prévalence de 12%). En revanche, P. mirabilis avait tendance à être plus pathogène chez C. elegans lorsqu’il était porteur d’un îlot / Salmonella genomic island (SGI1) is an integrative mobilizable element initially described in an epidemic multidrug-resistant Salmonella Typhimurium DT104. Since this first report, many variants and related genomic islands (Proteus genomic island 1 (PGI1)) have been described among Salmonella enterica serovars and in Proteus mirabilis. These islands have a stable backbone and a highly variable multidrug-resistant (MDR) region. The objective of this work was to study SGI1 from clinical P. mirabilis isolates (University hospitals of Dijon and Lariboisière - Paris) and S. enterica (University hospital of Dijon) The prevalence of these islands ranged from 5% to 16% in P. mirabilis with at least one acquired resistance. The genotypic analysis revealed a wide diversity among isolates but also the presence of some clonal isolates harbouring SGI1 or PGI1. Genomic island sequencing revealed the great plasticity of MDR regions, primarily mediated by IS26. Thanks to IS26 movements, the MDR region gains resistance genes (such as blaCTX-M-15) present in structures initially detected in plasmids from widely distributed Enterobacteriaceae. Many species of Enterobacteriaceae that harbour IncA/C plasmids are able to acquire islands by conjugation. These islands are then incorporated into specific sites on the chromosome (trmE). They could also be completely excised from Enterobacteriaceae under antibiotic pressure in the presence of an IncA/C plasmid. Genomic islands should be regarded on the one hand as a steady interface of resistance and on the other hand as a dynamic interface conveying resistance genes. Finally, SGI1 of S. enterica was not found to increase virulence in a Caenorhabditis elegans model or in a retrospective clinical study (12% of prevalence). However, it seems that P. mirabilis becomes more virulent when it harbours SGI1 in Caenorhabditis elegans
5

L’îlot de multirésistance aux antibiotiques, Salmonella Genomic Island 1 (SGI1) : variabilité, diffusion inter - espèces et implication dans la virulence / The multidrug resistance island, Salmonella Genomic Island 1 (SGI1) : variability, inter-species diffusion and implication in virulence

Targant, Hayette 27 September 2010 (has links)
Les salmonelles sont l’une des premières causes d’infections bactériennes d’origine alimentaire. Depuis le début des années 1990, l’isolement de salmonelles multirésistantes aux antibiotiques a considérablement accru avec l’émergence des souches épidémiques Salmonella Typhimurium DT104 qui sont, pour la majorité, résistantes à l’ampicilline, le chloramphénicol, la streptomycine, les sulfamides et les tétracyclines. Les gènes codant ces résistances sont regroupés sur un intégron complexe de classe 1 nommé In104, localisé lui-même sur un îlot génomique de 43 kb désigné Salmonella Genomic Island 1 (SGI1). Depuis sa première identification chez S. Typhimurium DT104, SGI1 a été identifié à travers le monde chez plusieurs sérovars de Salmonella, et plus récemment chez Proteus mirabilis. Chez ces souches, la multirésistance aux antibiotiques est liée, soit à l’îlot SGI1 dans sa forme initialement décrite, soit à des variants de SGI1 correspondant à la structure initiale de SGI1 comportant des modifications au niveau de l’intégron complexe In104. L’îlot génomique Salmonella Genomic Island 1 (SGI1) représente une préoccupation importante car le phénotype de multirésistance qu’il confère aux souches bactériennes est souvent responsable d’échecs thérapeutiques pouvant entrainer des complications importantes, voire la mort. Dans ce contexte, le travail de thèse a été centré sur l’enjeu sanitaire majeur représenté par cette diffusion épidémique du clone S. Typhimurium au cours des années 1990 chez l’homme et les bovins. Les travaux entrepris dans le cadre de la thèse ont eu, en premier lieu, l’objectif d’apprécier l’évolution moléculaire de SGI1 dix années après l’émergence de ces souches en élevage bovin, puis d’évaluer la diffusion de SGI1 chez des souches naturelles appartenant à d’autres genres bactériens que Salmonella. Il a ainsi été dressé un bilan de la multirésistance aux antibiotiques chez les souches de S. Typhimurium isolées de bovins malades en France de 2002 à 2007 et une recherche de la présence de SGI1, chez d’autres espèces bactériennes que Salmonella, et par sondage à partir de leurs phénotypes de résistance, a été mise en œuvre. Les résultats obtenus ont indiqué un faible pouvoir évolutif de SGI1 qui semble en contradiction avec les capacités moléculaires majeures de recombinaison et de transfert démontrées tant in vitro qu’in vivo. Les études menées ont toutefois permis la première description d’un nouveau variant, nommé SGI1-T, qui résulte d’une recombinaison intramoléculaire. Le deuxième grand objectif de la thèse a été de contribuer à une meilleure connaissance du rôle que pourrait avoir SGI1 dans la virulence bactérienne. Une première stratégie de modélisation expérimentale (salmonellose systémique murine) a ainsi été conduite, qui visait à comparer le pouvoir virulent in vivo de souches isogéniques ne se distinguant que par la présence ou l’absence de SGI1. Une seconde approche a été également menée, qui a consisté en une évaluation du rôle de SGI1 dans la formation de biofilms, l’organisation en biofilms favorisant une meilleure colonisation bactérienne, qui peut constituer à son tour un élément d’efficacité du pouvoir virulent final. Les résultats obtenus ont confirmé le rôle positif de SGI1 dans la formation de biofilms, et plus généralement son implication dans la signalisation cellulaire du Quorum Sensing. / Salmonella is a major cause of food-borne outbreaks. Since the early 1990s, isolation of multidrug-resistant Salmonella has increased with the emergence of epidemic Salmonella Typhimurium DT104 strains which are mostly resistant to ampicilin, chloramphenicol, streptomycin, sulfonamides and tetracyclines. The genes coding these resistances are clustered on a complex class 1 integron (MDR region) located on a genomic island of 43 kb designated SGI1. Since its first identification in S. Typhimurium DT104, SGI1 has been identified worldwide in other Salmonella serotypes, and more recently in Proteus mirabilis. For these strains, multidrug resistance is conferred, either to the classical structure of SGI1, or to related variants of SGI1 corresponding to the initial structure of SGI1 with modification of the complexe integron In104. The Salmonella Genomic Island 1 (SGI1) constitutes a great concern since it confers a multidrug resistance phenotype often responsible of therapeutic failures which may cause important complications, or even death. In this context, the work has been focused on the major health issue represented by the epidemic diffusion of the Salmonella Typhimurium clone in the course of 1990s in human and cattle. As a first objective, the work allowed to appreciate the molecular evolution of SGI1 in the course of time and to assess the diffusion of SGI1 to other bacterial strains than Salmonella in natural conditions. Therefore, an overview of the multidrug resistance in Salmonella Typhimurium strains isolated from diseased cattle in France from 2002 to 2007 was carried out and a screening of natural strains from other bacterial species than Salmonella that may harbor SGI1 was undertaken. The results indicated weak molecular evolutions of SGI1, which seems in contradiction with the great capability of SGI1 to recombine and transfer, as attested in vitro as in vivo. Nevertheless, this study allowed the first description of a new SGI1 variant, named SGI1-T, which is the result of intra-molecular recombination events. Another second objective of the thesis was to contribute to a better knowledge of the role of SGI1 in bacterial virulence. A strategy of experimental modeling (murine systemic salmonellosis) was first set up to compare the levels of virulence conferred by isogenic strains differing only by the presence or the absence of SGI1. A second approach was also carried out to evaluate the role of SGI1 in biofilm formation. Indeed, the organization in biofilm facilitates bacterial colonization, which constitutes in turn an element of effectiveness of the final virulence. A positive role of SGI1 in biofilm formation was demonstrated in the framework of this study, and more generally, questions the role of SGI1 in the Quorum Sensing regulation system.
6

L'îlot de multirésistance aux antibiotiques, Salmonella Genomic Island 1 (SGI1) : variabilité, diffusion inter - espèces et implication dans la virulence

Targant, Hayette 27 September 2010 (has links) (PDF)
Les salmonelles sont l'une des premières causes d'infections bactériennes d'origine alimentaire. Depuis le début des années 1990, l'isolement de salmonelles multirésistantes aux antibiotiques a considérablement accru avec l'émergence des souches épidémiques Salmonella Typhimurium DT104 qui sont, pour la majorité, résistantes à l'ampicilline, le chloramphénicol, la streptomycine, les sulfamides et les tétracyclines. Les gènes codant ces résistances sont regroupés sur un intégron complexe de classe 1 nommé In104, localisé lui-même sur un îlot génomique de 43 kb désigné Salmonella Genomic Island 1 (SGI1). Depuis sa première identification chez S. Typhimurium DT104, SGI1 a été identifié à travers le monde chez plusieurs sérovars de Salmonella, et plus récemment chez Proteus mirabilis. Chez ces souches, la multirésistance aux antibiotiques est liée, soit à l'îlot SGI1 dans sa forme initialement décrite, soit à des variants de SGI1 correspondant à la structure initiale de SGI1 comportant des modifications au niveau de l'intégron complexe In104. L'îlot génomique Salmonella Genomic Island 1 (SGI1) représente une préoccupation importante car le phénotype de multirésistance qu'il confère aux souches bactériennes est souvent responsable d'échecs thérapeutiques pouvant entrainer des complications importantes, voire la mort. Dans ce contexte, le travail de thèse a été centré sur l'enjeu sanitaire majeur représenté par cette diffusion épidémique du clone S. Typhimurium au cours des années 1990 chez l'homme et les bovins. Les travaux entrepris dans le cadre de la thèse ont eu, en premier lieu, l'objectif d'apprécier l'évolution moléculaire de SGI1 dix années après l'émergence de ces souches en élevage bovin, puis d'évaluer la diffusion de SGI1 chez des souches naturelles appartenant à d'autres genres bactériens que Salmonella. Il a ainsi été dressé un bilan de la multirésistance aux antibiotiques chez les souches de S. Typhimurium isolées de bovins malades en France de 2002 à 2007 et une recherche de la présence de SGI1, chez d'autres espèces bactériennes que Salmonella, et par sondage à partir de leurs phénotypes de résistance, a été mise en œuvre. Les résultats obtenus ont indiqué un faible pouvoir évolutif de SGI1 qui semble en contradiction avec les capacités moléculaires majeures de recombinaison et de transfert démontrées tant in vitro qu'in vivo. Les études menées ont toutefois permis la première description d'un nouveau variant, nommé SGI1-T, qui résulte d'une recombinaison intramoléculaire. Le deuxième grand objectif de la thèse a été de contribuer à une meilleure connaissance du rôle que pourrait avoir SGI1 dans la virulence bactérienne. Une première stratégie de modélisation expérimentale (salmonellose systémique murine) a ainsi été conduite, qui visait à comparer le pouvoir virulent in vivo de souches isogéniques ne se distinguant que par la présence ou l'absence de SGI1. Une seconde approche a été également menée, qui a consisté en une évaluation du rôle de SGI1 dans la formation de biofilms, l'organisation en biofilms favorisant une meilleure colonisation bactérienne, qui peut constituer à son tour un élément d'efficacité du pouvoir virulent final. Les résultats obtenus ont confirmé le rôle positif de SGI1 dans la formation de biofilms, et plus généralement son implication dans la signalisation cellulaire du Quorum Sensing.

Page generated in 0.0286 seconds