Spelling suggestions: "subject:"bidomain"" "subject:"codomain""
11 |
Hledaní nových interakčních partnerů SH3 domény adaptorového proteinu p130Cas / The search for novel interaction partners of SH3 domain of an adaptor protein p130CasGemperle, Jakub January 2012 (has links)
Protein p130Cas is the major tyrosine phosphorylated protein in cells transformed by v-crk and v-src oncogenes. P130Cas plays an important role in invasiveness and metastasis of Src-transformed cells. In breast cancer patients, high p130Cas levels are associated with higher recurrence of disease, poor response to tamoxifen treatment and lower overall survival. In non-transformed cells, after the stimulation of integrins, protein p130Cas is phosphorylated in substrate domain affecting cell migration and cytoskeletal dynamics. For this signalling is the SH3 domain of p130Cas indispensable. In this thesis, was for the first time using the Phage display method analysed and subsequently characterized the binding motif of SH3 domain of p130Cas. Based on this high-affinity motif [AP]-P-[APMS]-K-P-[LPST]-[LR]- [LPST], we predicted new interaction partners of protein p130Cas and subsequently confirmed the interaction with the Ser/Thr kinase PKN3. This kinase colocalizes with p130Cas in the nucleus and perinuclear region and could phosphorylate p130Cas. In this thesis, we also analysed the effect of phosphomimicking mutation of tyrosine from sequence ALYD, which is conserved in the sequence of SH3 domains, on ability of these domains to bind ligands. This mutation reduced binding by about 3 orders of...
|
12 |
The Roles of RasGAP SH3 Domain Binding Proteins (G3BPs) in RNA Metabolism, the Cellular Stress Response and TumorigenesisStirling, Susan Renee, n/a January 2006 (has links)
G3BP1 and G3BP2 are members of a highly conserved family of multi-functional RNA binding proteins, which appear to co-ordinate signal transduction and post-transcriptional gene regulation. Both proteins are over-expressed in cancer, and G3BP1 promotes cell proliferation and survival. Aberrant expression of various RNA binding proteins is common in cancer, and several of these proteins influence tumorigenesis. Therefore, detailed examination of RNA binding proteins, such as G3BPs, may provide insights into the post-transcriptional mechanisms underlying tumorigenesis. Tumours arise as a consequence of genetic mutation or alteration, which often result from stress-induced DNA damage. Cancer progression is facilitated by various epigenetic stress adaptation mechanisms. Stressful stimuli induce transitory translational shut-off, mediated by phosphorylation of eukaryotic initiation factor alpha;(eIF2alpha;). This phosphorylation event leads to formation of discrete cytoplasmic foci known as stress granules (SGs), which are translationally-silent sites of mRNA sorting. It was initially thought that an RNA-binding protein, T-cell internal antigen 1 (TIA-1), was instrumental in both the formation and functioning of SGs, because over-expression of TIA-1 induces spontaneous SGs and concomitantly causes a decrease in reporter gene expression. It is now clear that SG content can change depending on the type of stress, and that various proteins, including G3BP1, can induce spontaneous SGs. In vitro evidence previously implicated both G3BP1 and G3BP2 as endoribonucleases, so it was suggested that G3BPs act to target mRNA for decay at the SG. This project sought to further investigate this proposal, and in this way gain insight into the specific function of G3BPs in post-transcriptional regulation during tumorigenesis. Characterisation of G3BP1 and G3BP2 expression and localisation patterns in human cells and cancer was necessary before functional analyses in human cell systems could be undertaken. Both proteins were found to be over-expressed in breast cancer, irrespective of cancer stage or grade. G3BP1 and G3BP2 were also expressed in all human cell lines tested, despite previously observed tissue-specific expression. These results support the notion that G3BP expression is switched on in parallel with cell proliferation, and as such, may influence tumorigenesis. The results of further analyses suggested that the diverse functions attributed to G3BP1 and G3BP2 may be facilitated by isoform-specific expression, various post-translational modifications and sub-cellular localisation. Despite the absence of a canonical endoribonuclease domain, it was previously reported that site-specific phosphorylation of G3BP1 enables the protein to degrade a synthetic c-myc RNA substrate in vitro. This finding implicated G3BP in the specific regulation of a proto-oncogene. Tailored reporter assays were thus designed in order to address the in vivo consequences of G3BP's putative endoribonuclease activity. Contrary to expectations, all G3BP family members increased or maintained the expression of a range of reporters, at both the mRNA and protein level, irrespective of the presence of any particular cis-acting element, coding sequence or promoter. These results support the emerging notion that G3BPs positively affect the expression of at least some of their target mRNAs, and may also indirectly promote transcription. In contrast to the theory that G3BPs degrade proto-oncogenic mRNA/s, these findings are consistent with a role for G3BP in promoting cell proliferation and survival. Further analyses showed that G3BP1 and G3BP2 simultaneously increased reporter gene expression and induced SG formation. These findings highlighted the fact that SGs are dynamic sorting stations for mRNAs, and not merely sites of stalled translation. This result also supports the notion that a variety of proteins may be recruited to the SG to facilitate a multitude of mRNA fates. Although the precise role of the SG in stress adapation is not known, it is clear that an appropriate integrated stress response (ISR) is required for cells to survive in sub-optimal conditions. It was found that specific G3BP1 knockdown inhibited SG formation and cell survival, and this appeared to occur downstream of eIF2alpha; phosphorylation. The phosphorylation of eIFalpha; is the only factor known to be necessary for SG formation and cell survival. This data is the first to implicate SG formation itself, downstream of eIF2alpha; phosphorylation, in the survival phase of the ISR. The results also suggest that G3BP1 plays a pivotal role in the post-transcriptional mechanisms underlying stress adaptation. To facilitate future analysis of G3BP roles in the regulation of specific transcripts and in SG biology, a pilot study to identify G3BP RNA ligands was undertaken. Immunoprecipitation of epitope-tagged G3BP1 from stable cell lines facilitated purification and isolation of RNA in association with G3BP1. Specific RNA transcripts were subsequently detected and identified by microarray. Many genes were enriched in the G3BP1 immunoprecipitate. Transcript enrichment in the control immunoprecipitate was comparatively weak and seemingly random, suggesting that several replicates will enable generation of a reliable target list. This work forms a promising basis for further investigations into G3BP functionality, and also provides a platform for broader and more large-scale analyses of the mechanisms of post-transcriptional gene regulation. The work presented in this thesis addressed the potential post-transcriptional mechanisms by which the G3BP family of proteins mediate cell proliferation and survival. Both G3BP1 and G3BP2 were shown to be over-expressed in tumours and each appeared to promote reporter gene expression. G3BP1 was also found to play a pivotal role in stress adaptation. A technique to identify novel RNA ligands was assessed, and it was found that G3BP1 may interact with various mRNA transcripts. It is hypothesised that the G3BP family of proteins, and in particular G3BP1, function to determine the fate of specific RNAs in response to cellular stress and other stimuli. In this way, G3BP proteins may facilitate appropriate responses to extra-cellular stimuli which allow for cell proliferation and survival.
|
13 |
Mapping Specificity Profiles and Protein Interaction Networks for Peptide Recognition ModulesTonikian, Raffi 03 March 2010 (has links)
Protein-protein interactions are of vital importance to the cell as they mediate the assembly of protein complexes that carry out diverse biological functions. Many proteins involved in cellular signaling are built by the combinatorial use of peptide recognition modules (PRMs), which are small protein domains that bind to their cognate ligands by recognizing short linear peptide motifs. Thousands of PRMs are found in nature, requiring improved methods to better elucidate their molecular determinants of binding and to allow accurate mapping of their interaction networks. In this thesis, I describe the development and application of phage-displayed peptide libraries to map the binding specificities of two common PRMs. First, I generated specificity profiles for 82 C. elegans and human PDZ domains that could be organized into a specificity map. The map revealed that PDZ domains have far greater substrate sequence specificity than previously believed, providing significant insights into the relationships between PDZ structure and specificity, and allowing specificity prediction for uncharacterized domains. My results were used to predict both endogenous and pathogenic PDZ interactions. This analysis revealed that viruses have evolved ligands that specifically mimic PDZ domains to subvert host cell immunity.
Second, I analyzed the binding specificity for the SH3 domain family in S. cerevisae. I found that, like PDZ domains, SH3 domains have binding specificities that are more detailed than the conventional classification system. The phage-derived specificity profiles were combined with data from oriented peptide and yeast two-hybrid screening to generate a highly accurate SH3 domain interaction network. Given the prominent role of SH3 domains in endocytosis, the SH3 domain interaction data was used to predict the dynamic localization of several uncharacterized endocytosis proteins, which was subsequently confirmed by cell-based assays.
The application of the techniques described here to other PRM families will significantly improve protein interaction maps for signaling pathways, which will illuminate our understanding of the cell circuitry, allow the use of PRMs as general affinity reagent and detection tools, and guide the development of small molecule inhibitors that mimic their peptide ligands for therapeutic intervention.
|
14 |
Mapping Specificity Profiles and Protein Interaction Networks for Peptide Recognition ModulesTonikian, Raffi 03 March 2010 (has links)
Protein-protein interactions are of vital importance to the cell as they mediate the assembly of protein complexes that carry out diverse biological functions. Many proteins involved in cellular signaling are built by the combinatorial use of peptide recognition modules (PRMs), which are small protein domains that bind to their cognate ligands by recognizing short linear peptide motifs. Thousands of PRMs are found in nature, requiring improved methods to better elucidate their molecular determinants of binding and to allow accurate mapping of their interaction networks. In this thesis, I describe the development and application of phage-displayed peptide libraries to map the binding specificities of two common PRMs. First, I generated specificity profiles for 82 C. elegans and human PDZ domains that could be organized into a specificity map. The map revealed that PDZ domains have far greater substrate sequence specificity than previously believed, providing significant insights into the relationships between PDZ structure and specificity, and allowing specificity prediction for uncharacterized domains. My results were used to predict both endogenous and pathogenic PDZ interactions. This analysis revealed that viruses have evolved ligands that specifically mimic PDZ domains to subvert host cell immunity.
Second, I analyzed the binding specificity for the SH3 domain family in S. cerevisae. I found that, like PDZ domains, SH3 domains have binding specificities that are more detailed than the conventional classification system. The phage-derived specificity profiles were combined with data from oriented peptide and yeast two-hybrid screening to generate a highly accurate SH3 domain interaction network. Given the prominent role of SH3 domains in endocytosis, the SH3 domain interaction data was used to predict the dynamic localization of several uncharacterized endocytosis proteins, which was subsequently confirmed by cell-based assays.
The application of the techniques described here to other PRM families will significantly improve protein interaction maps for signaling pathways, which will illuminate our understanding of the cell circuitry, allow the use of PRMs as general affinity reagent and detection tools, and guide the development of small molecule inhibitors that mimic their peptide ligands for therapeutic intervention.
|
15 |
Investigations of Myelin Basic Protein, SH3 Proteins and the Oligodendrocyte Cytoskeleton during Maturation and DevelopmentSmith, Graham 29 August 2012 (has links)
The myelin basic protein (MBP) family arises from different transcription start sites of the Golli (gene of oligodendrocyte lineage) gene, with further variety generated by differential splicing. The “classic” MBP isoforms are peripheral membrane proteins that facilitate compaction of the mature myelin sheath, but also have multiple protein interactions. As an intrinsically disordered protein, MBP has proven to have complex structural and functional relationships with proteins in vitro including actin, tubulin, Ca2+-calmodulin, and multiple protein kinases. The investigations reported in this thesis were to further examine the multifunctionality, and protein:protein interactions of MBP with cytoskeletal and SRC homology 3 domain (SH3) proteins in cells using an oligodendrocyte (OLG) model system to better understand MBP’s contributions to membrane structure, formation, and elaboration in the developing OLG. A new function of MBP has been described showing that classic MBPs can modulate voltage operated calcium channels (VOCCs) by direct or indirect protein-protein interactions at the OLG cytoplasmic leaflet. These interactions contribute to global calcium homeostasis, and may play a complex developmental and spatiotemporal role in the regulation of oligodendrocyte precursor cell (OPC) migration and OLG differentiation. The importance of MBPs SH3 ligand binding domain within its central amino acid region was investigated with the protein-tyrosine kinase Fyn. Co-expression of MBP with a constitutively-active form of Fyn in OLGs resulted in membrane process elaboration, a phenomenon that was abolished by amino acid substitutions within MBP’s SH3-ligand domain. These results suggest that MBP’s SH3-ligand domain plays a key role, and may be required for proper membrane elaboration of developing OLGs. Lastly, interactions of MBP with the OLG cytoskeleton were investigated in OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). MBP redistributes to distinct ‘membrane-ruffled’ regions of the plasma membrane where it had increased co-localization with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. The results presented here advance our understanding regarding protein:protein interactions of MBP, and its multifunctionality in OLGs with regards to membrane formation and elaboration. / This work was supported by the Canadian Institutes of Health Research (MOP #86483, J.M.B. and G.H.), and Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC, G.H., RG121541). G.S.T.S. was a recipient of a Doctoral Studentship from the Multiple Sclerosis Society of Canada
|
16 |
Sorbin and SH3 Domain-containing Protein 2 Is Released from Infarcted Heart in Very Early Phase: Proteomic Analysis of Cardiac Tissues from Patients / SORBS2は超急性期の梗塞心筋から逸脱する : 患者心臓組織を用いたプロテオーム解析Kakimoto, Yu 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18138号 / 医博第3858号 / 新制||医||1002(附属図書館) / 30996 / 京都大学大学院医学研究科医学専攻 / (主査)教授 木村 剛, 教授 坂田 隆造, 教授 羽賀 博典 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
17 |
Adaptorové domény signálních proteinů: analýza fosforylačních míst a role v mechanorecepci / Adaptor domains in signalling proteins: phosphorylation analysis and a role in mechanosensingTatárová, Zuzana January 2012 (has links)
P130Cas (Crk-associated substrate, CAS) is a multiadaptor protein important in integrin signalling where it positively regulates cell motility, invasion, proliferation and survival. CAS lacks enzymatic activity, but its binding to other signalling proteins could lead to the change of phosphorylation status of its substrate domain, which is the main mode, through which CAS takes part in regulating cell behavior. Local tensions in focal adhesions lead to an extension of CAS substrate domain, leaving phosphorylation sites more accessible for kinases, which subsequently leads to an increased CAS substrate domain phosphorylation. The CAS anchorage in focal adhesions is mediated by its SH3 domain, probably through the interactions with FAK, and also by C-terminal domain, where interaction partners are not known. The aim of my project is to find out, which proteins mediate the CAS anchorage to the focal adhesions. The elucidation of CAS anchorage to focal adhesions will contribute to the understanding of mechanosensory function of CAS. Experimental data suggest that tyrosine phosphorylation of the CAS SH3 domain plays an important role in the regulation of its binding properties. Another goal of my diploma project was to analyze the significance of tyrosine phosphorylation within SH3 domain and other...
|
18 |
Inactivation of Stac3 causes skeletal muscle defects and perinatal death in miceReinholt, Brad Michael 13 March 2012 (has links)
The Src homology 3 domain (SH3) and cysteine rich domain (C1) 3 (Stac3) gene is a novel gene copiously expressed in skeletal muscle. The objective of this research was to determine the role of Stac3 in development, specifically in skeletal muscle. We achieved this objective by evaluating the phenotypic effects of Stac3 gene inactivation on development in mice. At birth homozygous Stac3 null (Stac3-/-) mice died perinatally and remained in fetal position with limp limbs, but possessed otherwise normal organs based on gross and histological evaluations. The primary phenotypes displayed at term in Stac3-/- mice were reduced late gestational body weights, increased prevalence of myotubes with centrally located nuclei and severe deformities throughout all skeletal muscles. At embryonic day 18.5 (E18.5) Stac3-/- mice displayed a 12.7% reduction (P < 0.001) in weight compared to wild type (Stac3+/+) or heterozygous (Stac3+/-) littermates while at E15.5 body weights and morphology were similar. At birth (P0) and at E17.5, Stac3-/- mice had 59% and 24% (P < 0.001) more myotubes with centrally located nuclei, respectively, than Stac3+/- or Stac3+/+ littermates. Stac3-/- mice also displayed increased myotube and myofiber cross sectional area at P0 (P < 0.001) and E17.5 (P < 0.05) with disorganized fiber bundling. Overall, these data show Stac3 is necessary for development of viable offspring and suggest Stac3 plays a critical role in fetal development where its primary phenotype is exhibited in skeletal muscle. / Master of Science
|
19 |
Investigation of binding preferences and identification of novel binding partners for the SH3 domains of the multifunctional adaptor protein CD2APRouka, Evgenia January 2014 (has links)
CD2AP is a member of the CD2AP/CIN85 family of adaptors and involved in several cellular processes, such as kidney podocyte development, actin mediated membrane trafficking and T cell activation. It contains three SH3 domains whose binding properties and interaction partners remain largely unexplored. The CD2AP SH3 interaction with the novel partner Rab5-activating GEF RIN3 was studied extensively by isothermal titration calorimetry (ITC), peptide scanning arrays, mutagenesis and X-ray crystallography. Mapping of the interaction regions showed that human RIN3 contains two binding sites for the CD2AP SH3 domains. From these studies, the CD2AP SH3 recognition motif P-x-P/A-x-x-R emerged. Two crystal structures (1.65 Å and 1.2 Å) of the SH3 1 and SH3-2 domains in complex with RIN3 epitopes 1 and 2 respectively revealed that these residues serve as anchoring points. With the aid of bioinformatics tools, this motif was used to conduct a peptide array-based screen for additional signalling partner candidates. One of the hits was the Arf-GAP ARAP1. ITC data indicate that the three SH3 domains differentially recognise three ARAP1 epitopes, with the first ARAP1 epitope binding to SH3-2 in the nanomolar range. A crystal structure (1.6 Å) of the SH3-2 domain in complex with the first ARAP1 epitope implicates two additional anchoring residues that extend beyond the PPII helical region of the canonical motif. The CD2AP/ARAP1 interaction was confirmed in podocytes and cancer cells at the endogenous protein level. Even though RIN3 and ARAP1 are involved in membrane trafficking, a direct link to CD2AP had not been reported before. Other candidates from the peptide array analyses were also investigated by ITC. In conclusion, this study led to the elucidation of the CD2AP SH3-1 and SH3-2 domain binding signatures and the identification of putative novel binding partners for all three SH3 domains. Lastly, insight was gained into the binding preferences of CD2AP SH3-3.
|
20 |
Biologický význam fosforylace tyrosinu 90 v SH3 doméně kinázy Src / Biological relevance of the tyrosine 90 phosphorylation in SH3 domain Src kinaseKoudelková, Lenka January 2013 (has links)
Kinase Src plays an essential role in signal transduction from activated surface receptors. Src is involved in signal pathways that participate in the control of cell proliferation, differentiation or motility. That is why Src activation undergoes strict and complex regulation. Inactive conformation is maintained by intramolecular inhibitory interactions. SH3 domain associates with a polyprolin helix in CD linker whereas SH2 domain binds phosphorylated C-terminal tyrosine 527. Both regulatory domains maintain contacts with the lobes of a kinase domain thereby stabilizing an inactive conformation of the catalytic domain. Transition to an active state is accompanied by a disruption of these inhibitory interactions. Conformation changes are substantially influenced by the phosphorylation status of key tyrosines 416 and 527. Phosphoproteomic analysis revealed new Src tyrosine residue, which can be phosphorylated in vivo. It has been found, that tyrosine works as an additional regulator of Src activity. This is Tyr 90, which forms one of the hydrophobic pockets in the binding surface of Src SH3 domain. Based on the expression of phosphomimic mutant Src 90E in S. pombe or in SYF lineage, it has been observed, that Tyr 90 phosphorylation elevates Src kinase activity. The reason is that the phosphate...
|
Page generated in 0.0375 seconds