• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemical kinetics modelling study of naturally aspirated and boosted SI engine flame propagation and knock

Gu, Jiayi January 2015 (has links)
Modern spark ignition engines are downsized and boosted to meet stringent emission standards and growing customer demands on performance and fuel economy. They operate under high intake pressures and close to their limits to engine knock. As the intake pressure is increased knock becomes the major barrier that prevents further improvement on downsized boosted spark ignition engines. It is generally accepted that knock is caused by end gas autoignition ahead of the propagating flame. The propagating flame front has been identified as one of the most influential factors that promote the occurrence of autoignition. Systematic understanding and numerical relation between the propagating flame front and the occurrence of knock are still lacking. Additionally, knock mitigation strategy that minimizes compromise on engine performance needs further researching. Therefore the objectives of the current research consist of two steps: 1). study of turbulent flame propagation in both naturally aspirated SI engine. 2) study of the relationship between flame propagation and the occurrence of engine knock for downsized and boosted SI engine. The aim of the current research is, firstly, to find out how turbulent flames propagate in naturally aspirated and boosted S.I. engines, and their interaction with the occurrence of knock; secondly, to develop a mitigation method that depresses knock intensity at higher intake pressure. Autoignition of hydrocarbon fuels as used in spark ignition engines is a complex chemical process involving large numbers of intermediate species and elementary reactions. Chemical kinetics models have been widely used to study combustion and autoignition of hydrocarbon fuels. Zero-dimensional multi-zone models provide an optimal compromise between computational accuracy and costs for engine simulation. Integration of reduced chemical kinetics model and zero-dimensional three-zone engine model is potentially a effective and efficient method to investigate the physical, chemical, thermodynamic and fluid dynamic processes involved in in-cylinder turbulence flame propagation and knock. The major contributions of the current work are made to new knowledge of quantitative relations between intake pressure, turbulent flame speed, and knock onset timing and intensity. Additionally, contributions have also been made to the development of a knock mitigation strategy that effectively depresses knock intensity under higher intake pressure while minimizes the compromise on cylinder pressure, which can be directive to future engine design.
2

Mechanism Triggering Pre-Ignition Events and Ideas to Avoid and Suppress Pre-Ignition in Turbocharged Spark-Ignited Engines

Singh, Eshan 10 1900 (has links)
Turbocharged spark-ignited engines may encounter stochastic events of premature ignition of the fuel-air mixture, termed as pre-ignition. Pre-ignition often leads to extremely high peak pressure and pressure oscillations, causing engine damage. A review of pre-ignition in historic times is done in this dissertation, and the similarities and differences compared to modern pre-ignition issue are brought forth. Experiments conducted with varying injection strategies yielded varying pre-ignition tendency. The pre-ignition tendency correlated with the charge cooling tendency and the mass of liquid fuel impinging on the cylinder liner and diluting the oil film. The diluted oil is trapped in the piston ring area and from time-to-time gets launched into the combustion chamber near top dead center. The fuel-oil mixture droplet may ignite the surrounding charge before the spark timing. Experiments conducted with varying exhaust back pressure showed dependence of pre-ignition tendency on in-cylinder temperature near top dead center, for cases when intake pressure is higher than exhaust pressures. For exhaust pressure higher than intake pressure, fuel wall impingement was critical to pre-ignition. This research also devised ion-current based sensors for pre-ignition detection. Initial experiments were done with DC-power based ion-current sensor, which detected a pre-ignition event when a flame brushed past the sensor. There was a need of faster-response sensor with high signal-to-noise ratio, that would allow pre-ignition detection at its inception stage, thereby giving enough time to trigger an evasive action. In this regard, an AC-powered ion-current sensor was devised and patented. Sudden fuel enrichment at the time of pre-ignition detection was investigated as an evasive method. Various strategies were investigated for their pre-ignition suppression tendency. Split injection, water injection, Octane-on-Demand, injecting different fluids in late compression stroke and dual fuel operation with gasoline and methane were found to be highly effective at suppressing pre-ignition completely. Use of ethanol in blends with different FACE gasolines is investigated to suggest fuel effects on pre-ignition. The strategies were successful at either reducing the mass of liquid fuel impinging the liner, reducing the in-cylinder temperature near top dead center or reducing the potential of residual gas content to trigger pre-ignition in the next cycle.
3

On the combustion of premixed natural gas/gasoline dual fuel blends in SI engines

Petrakides, Sotiris January 2016 (has links)
The continuous update of challenging emission legislations has renewed the interest for the use of alternative fuels. The low carbon content, the knocking resistance, and the abundance reserves, have classified natural gas as one of the most promising alternative fuels. The major constituent of natural gas is methane. Historically, the slow burning velocity of methane has been a major concern for its utilisation in energy efficient combustion applications. As emphasized in a limited body of experimental literature, a binary blend of methane and gasoline has the potential to accelerate the combustion process in an SI engine, resulting in a faster combustion even to that of gasoline. The mechanism of such effects remains unclear. This is partially owned to the inadequate prior scientific understanding of the fundamental combustion parameters, laminar burning velocity (Su0) and Markstein length (Lb), of a gasoline-natural gas Dual Fuel (DF) blend. The value of Lb characterises the sensitivity of the flame to stretch. The flame stretch is induced by aerodynamic straining and/or flame curvature. The current research study has therefore being concerned on understanding the combustion mechanism of premixed gasoline - natural gas DF blends both on a fundamental as well as practical SI engine level. The understanding on the contribution of Su0 and Lb to the velocity of a stretched laminar propagating flame has been extended through numerical analysis. A conceptual analysis of the laminar as compared to the SI engine combustion allowed further insights on the effect of turbulence to the mass burning rate of the base fuels. On a fundamental level, the research contribution is made through the quantification of the response of Su0 and Lb with the ratio of methane to PRF95 (95%volliq iso-octane and 5%volliq n-heptane) in a DF blend. Methane has been used as a surrogate for natural gas and PRF95 as a surrogate for gasoline. Constant volume laminar combustion experiments have been conducted in a cylindrical vessel at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5, 10 Bar, and a constant temperature of 373 K. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Spherically expanding flames visualised through schlieren photography were used to derive the values of Lb and Su0. It has been concluded that for pressures relevant to SI engine operation ( > 5bar) and stoichiometric to lean Air Fuel Ratios (AFRs), there is a positive synergy for blending methane to PRF95 due to the convergence of Lb of the blended fuel towards that of pure gas and Su0 towards that of pure liquid. In an SI engine environment, the research contribution is made through the characterisation and scientific understanding of the mechanism of DF combustion, and the importance of flame-stretch interactions at various engine operating conditions. Optical diagnostics have been integrated with in-cylinder pressure analysis to investigate the mechanism of flame velocity and stability with the addition of natural gas to gasoline in a DF blend, under a sweep of engine load (Manifold Absolute Pressure = 0.44, 0.51. 0.61 Bar), speed (1250, 2000, 2750 RPM) and equivalence ratio (0.8, 0.83, 1, 1.25). Consisted with the constant volume experiments, natural gas was added to gasoline in energy ratios of 25%, 50% and 75%. It has been concluded that within the flamelet combustion regime the effect of Lb is dominating the lean burn combustion process both from a flame stability and velocity prospective. The effect of Su0 on the combustion process gradually increases as the AFR shifts from stoichiometric to fuel rich values. For stoichiometric to fuel lean mixtures, the effect of turbulence on the increase of the mass burning rate is on average 13% higher for natural gas as compared to gasoline. The higher turbulence sensitivity of natural gas is attributed to its lower Lb value.
4

Modelling, control and diagnosis of aftertreatment systems based on three-way catalyst in spark-ignited engines

Real Minuesa, Marcelo 17 February 2020 (has links)
[ES] A pesar de la tendencia actual hacia la electrificación del transporte por carretera, los motores de combustión interna alternativos han sido esenciales en este sector y se espera que sigan siendo una tecnología con notable presencia durante las próximas décadas. Los vehículos de pasajeros actuales basados en motores de combustión interna son más ecológicos que los utilizados hace años, aunque todavía queda trabajo por hacer. Los sistemas de postratamiento están enfocados a minimizar tanto como sea posible el impacto de los motores de combustión interna en términos de emisiones contaminantes. En el caso de los motores de encendido provocado, los catalizadores de tres vías representan la tecnología más extendida en las últimas décadas, debido a su compacidad y buena relación precio-prestaciones. Estos convertidores son capaces de oxidar hidrocarburos y monóxido de carbono al mismo tiempo que reducen los óxidos de nitrógeno. No obstante, para lograr su mejor eficiencia, el dosado debe controlarse con precisión en torno a condiciones estequiométricas. En este sentido, los sistemas electrónicos de gestión del motor son esenciales para aprovechar las características de estos convertidores. En particular, las estrategias de control y diagnóstico desempeñan un papel clave para lograr una reducción efectiva de las emisiones en el amplio rango de condiciones de operación que se dan en condiciones de funcionamiento reales. El desarrollo de estas estrategias es fundamental, especialmente teniendo en cuenta el bajo nivel de emisiones permitido por las normativas de emisiones actuales y la tendencia hacia cero emisiones. El propósito de esta tesis doctoral es analizar el comportamiento del sistema de postratamiento en condiciones específicas pero a la vez muy comunes en conducción real, y desarrollar estrategias que proporcionen una reducción adicional de las emisiones en sistemas basados en catalizador de tres vías. Con la popularización de pequeños motores turboalimentados de encendido provocado, ha aumentado el uso de estrategias de barrido de la cámara de combustión para mitigar los típicos problemas de falta de par a bajo régimen. Esta tesis analiza el impacto de los pulsos de cortocircuito en el catalizador y en las sondas ¿. El proceso de cortocircuito de aire fresco al escape tiene un impacto importante en la dinámica intraciclo de la composición de los gases de escape. En particular, los pulsos de monóxido de carbono e hidrógeno seguidos por los pulsos de aire fresco perturban el normal funcionamiento del sensor de oxígeno. Por lo tanto, se ha propuesto un nuevo método para estimar la tasa de cortocircuito abordo. Este método permite corregir la desviación sufrida por el sensor y, por lo tanto, ayuda a reducir la penalización en emisiones de este tipo de estrategias. Para mejorar la eficiencia del catalizador en condiciones transitorias, no solo se requiere un control preciso del dosado aguas arriba del catalizador, sino que también resulta imprescindible considerar el comportamiento dinámico del convertidor en sí mismo. Por ejemplo, el almacenamiento de oxígeno es un buen indicador del estado del catalizador, pero no se puede medir directamente mediante sensores. Por lo tanto, el desarrollo de modelos es clave en las estrategias de control actuales, para poder estimar abordo diferentes parámetros relacionados con el estado del catalizador. Varios modelos de catalizador se han desarrollado en esta tesis doctoral para lidiar con diferentes cuestiones, desde la predicción de los efectos de la condensación de agua en la evolución de la temperatura del catalizador justo después del arranque en frío, a la cuantificación del nivel de envejecimiento, pasando por el control óptimo de purga del catalizador. / [CAT] Malgrat la tendència actual cap a l'electrificació del transport per carretera, els motors de combustió interna alternatius han sigut essencials en aquest sector i s'espera que continuen sent una tecnologia amb notable presència durant les pròximes dècades. Els vehicles de passatgers actuals basats en motors de combustió interna són més ecològics que els utilitzats fa anys, encara que hi ha treball per fer. Els sistemes de post-tractament estan enfocats a minimitzar tant com siga possible l'impacte dels motors de combustió interna en termes d'emissions contaminants. En el cas dels motors d'encés provocat, els catalitzadors de tres vies representen la tecnologia més estesa en les últimes dècades, pel fet que són compactes i posseeixen bona relació preu-prestacions. Aquests convertidors són capaços d'oxidar hidrocarburs i monòxid de carboni al mateix temps que redueixen els òxids de nitrogen. No obstant això, per a aconseguir la seua millor eficiència, el dosatge ha de controlar-se amb precisió entorn de condicions estequiomètriques. En aquest sentit, els sistemes electrònics de gestió del motor són essencials per a aprofitar les característiques d'aquests convertidors. En particular, les estratègies de control i diagnòstic exerceixen un paper clau per aconseguir una reducció efectiva de les emissions en l'ampli rang de condicions d'operació que es donen en condicions de funcionament reals. El desenvolupament d'aquestes estratègies és fonamental, especialment tenint en compte el baix nivell d'emissions permès per les normatives actuals i la tendència cap a zero emissions. El propòsit d'aquesta tesi doctoral és analitzar el comportament del sistema de post-tractament en condicions específiques però alhora molt comunes en conducció real, i desenvolupar estratègies que proporcionen una reducció addicional de les emissions en sistemes basats en catalitzador de tres vies. Amb la popularització de xicotets motors amb sobrealimentació d'encés provocat, ha augmentat l'ús d'estratègies de curtcircuit per a mitigar els típics problemes de falta de parell a baix règim. Aquesta tesi analitza l'impacte dels polsos de curtcircuit en el catalitzador i en les sondes ¿. El procés de curtcircuit d'aire fresc té un impacte important en la dinàmica intra-cicle de la composició dels gasos. En particular, els polsos de monòxid de carboni i hidrogen seguits pels polsos d'aire fresc pertorben el normal funcionament del sensor d'oxigen. Per tant, s'ha proposat un nou mètode per a estimar la taxa de curtcircuit del motor. Aquest mètode permet corregir la desviació patida pel sensor i, per tant, ajuda a reduir la penalització en emissions d'aquest tipus d'estratègies. Per a millorar l'eficiència del catalitzador en condicions transitòries, no solament es requereix un control precís del dosatge aigües amunt del catalitzador, sinó que també resulta imprescindible considerar el comportament dinàmic del convertidor en si mateix. Per exemple, l'emmagatzematge d'oxigen és un bon indicador de l'estat del catalitzador, però no es pot mesurar directament mitjançant sensors. Per tant, el desenvolupament de models és clau en les estratègies de control actuals, per poder estimar els diferents paràmetres relacionats amb l'estat del catalitzador. Diversos models de catalitzador s'han desenvolupat en aquesta tesi doctoral per a tractar diferents qüestions, des de la predicció dels efectes de la condensació d'aigua en l'evolució de la temperatura del catalitzador just després de l'arrencada en fred, a la quantificació del nivell d'envelliment, passant pel control òptim de porga del catalitzador. / [EN] In spite of the current tendency towards the electrification of the road transport, internal combustion engines have been essential in this sector and it is expected to continue being a technology with a noticeable presence during next decades. Current passenger cars based on internal combustion engines are greener than those used years ago, although it is still a developing process. Aftertreatment systems are aimed to minimize as much a possible the impact of internal combustion engines in terms of pollutant emissions. In case of spark-ignited engines, three-way catalytic converters represent the most widespread technology during last decades, due to their compactness and cost-performance. These converters are capable to oxidise hydrocarbons and carbon monoxide while simultaneously reducing nitrogen oxide. Nonetheless, to achieve their best efficiency, the air-to-fuel ratio must be accurately controlled close to stoichiometric conditions. In this sense, electronic engine management systems are essential to take advantage of the features of these converters. In particular, control and diagnosis strategies play a key role to achieve an effective emissions reduction under the wide range of operating conditions that arise in real driving conditions. The further development of this strategies is fundamental, especially taking into account the low emissions level allowed by current regulatory procedures and the trend towards zero emissions. The purpose of this dissertation is to analyse the behaviour of the aftertreatment system under very specific but at the same time very common conditions, and developing strategies that provide a further emissions reduction for systems based on three-way catalyst. With the popularization of small turbocharged spark-ignited engines, the use of scavenging strategies to solve the typical low-end torque issues has increased. This dissertation analyses the impact of the short-circuit pulses on both three-way catalyst and ¿ sensors. The short-circuit process has an important effect on the in-cycle dynamics of the exhaust gas composition. In particular, the carbon monoxide and hydrogen pulses followed by fresh air pulses cause a sensor bias. Thus a new method to on-line estimate the short-circuit rate has been proposed. This method allows to correct the sensor bias and, therefore, help to reduce the emissions penalty. To improve the TWC efficiency under transient conditions, not only an accurate air-to-fuel ratio control upstream of the converter is required, but also to consider the dynamic behaviour of the converter itself. For example, the oxygen storage is the main responsible for the converter dynamics, and thus, a good indicator of the catalyst state, but it cannot be directly measured. Hence the development of models is key in current control strategies, to on-line track different parameters related with the state of the converter. Several models have been derived in this dissertation in order to fulfil different requirements, from the prediction of water condensation effects on the temperature evolution inside the converter just after cold-start, to the quantification of the ageing level, through the optimal catalyst purge control, or the air-to-fuel ratio disturbances rejection. / Real Minuesa, M. (2020). Modelling, control and diagnosis of aftertreatment systems based on three-way catalyst in spark-ignited engines [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/137040 / TESIS
5

Novel Three-Way-Catalyst Emissions Reduction and GT-Power Engine Modeling

Michael Robert Anthony (13171233) 28 July 2022 (has links)
<p> One primary focus on internal combustion engines is that these engines create multiple harmful exhaust gases that can cause damage to the environment. There are a number of advanced strategies that are currently being investigated to help reduce the amount of these harmful emissions that are emitted from IC engines. One such method of reducing harmful emission gases focuses on the three-way-catalyst. A three-way-catalyst (TWC) is an exhaust emission control device that is designed in such a way to take harmful exhaust gases and convert them into less harmful gases through various chemical reactions within the TWC. To help further the reduction of these harmful gases in the TWC, a novel two-loop control and estimation strategy is used. This control and estimation strategy involves the use of two loops with an inner-loop controller, outer-loop robust controller, and an estimator in the outer-loop. The estimator consists of a TWC model and an extended Kalman filter which is used to estimate the fractional oxidation state (FOS) of the TWC. This estimated FOS is then used by the robust controller, along with other parameters, to produce a desired engine lambda reference signal, λup. This desired lambda signal is then used by the inner-loop controller to control the engine lambda. Accurate control of lambda is important because the air-fuel-ratio range for a TWC to effectively achieve oxidation and reduction simultaneously is extremely narrow. Another primary focus in the field of internal combustion engines is designing and tuning advanced models within GT-Power that can accurately predict what will happen when running an actual engine. Designing, troubleshooting, and testing a GT-Power model is an extensive but rewarding process. Creating an accurate engine model can not only provide one with primary engine data that is also measurable in a test cell, but can also provide insight into some of the intricate processes and nature of the engine that are difficult or impossible to physically measure. Cummins has an extensive process of tuning GT-Power engine models. This process include items such as initial model calibrations, model discretizations, turbocharger tunings, and other items. Some of these processes are used to calibrate both Cummins Power Systems Business Unit engines as well as a Purdue B6.7N natural gas engine. </p>
6

In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines

Shivapuji, Anand M January 2015 (has links) (PDF)
The current work, through experimental and numerical investigations, analyses the process and cycle level deviations in engine response on fuelling multi-cylinder natural gas engines with producer gas. Producer gas is a low calorific value bio-derived alternative with composition of 19 ± 1% CO and H2, 2 ± 0.5 % CH4, 12 ± 1% CO2 and 46 ± 1% N2 and has thermo-physical properties significantly different from natural gas. Experimental investigations primarily address the energy balance (full cycle analysis) and in-cylinder response (process specific analysis) at various operating conditions covering naturally aspirated and turbocharged mode of operation with natural gas and producer gas. Numerical investigations are based on two thermodynamic scope mathematical models, a zero dimensional model (Wiebe function) and a quasi-dimensional model (propagating flame front heat release). A detailed diagnostic analysis on a six cylinder (E6) indicates, turbocharger mismatch, the first explicit impact of fuel thermo-physical property variation. Turbocharger matching and optimization resulted in a peak load of 72.8 kWe (BMEP 9.47) at a maximum brake torque ignition angles of 22 deg before TDC and compressor pressure ratio of 2.25. Engine energy distribution analysis indicates skewed energy balance with higher cooling load (in excess of 30%) as compared to fossil fuel operation. This is attributed to the presence of nearly 20% H2 which enhances the convective cooling through the higher thermal conductivity. Parametric variation of H2 fraction on a two cylinder engine (E2) with four different syngas compositions (mixture H2 varying from 7.1% to 14.2%) depicts enhanced cooling load from 33.5% to 37.7%. Process level comparison indicates significant deviations in the heat release profile compared to fossil fuels. It has been observed that with an increase in mixture hydrogen fraction (from 7.1% to 14.2%), the fast burn phase combustion duration reduces from 59.6% to 42.6% but the terminal stage duration increases from 25.5% to 48.9%. The enhanced cooling of the mixture (due to the presence of hydrogen), particularly in the vicinity of walls is argued to contribute towards the sluggish terminal phase combustion. Immediate implication of thermo-kinematic response variation is on the magnitude and sensitivity of combustion descriptors and the need for dependent control system calibration for producer gas fuelled operation is established. Descriptor analysis is extended to knocking pressure traces and a new simple methodology is proposed towards identifying the occurrence and regime of knock. Analysing the implications through numerical investigation, the influence of the altered thermo-kinematic response for producer gas fuelled operation impacts 0D simulations. Zero dimensional simulations fail with conventional coefficients requiring fuel specific coefficients. Based on fuel specific coefficients, the suitability of 0D model for the simulation of varying operating conditions ranging from naturally aspirated to turbo charged engines, compression ratios and different engine geometries is established. The analysis is extended to quasi-dimensional through the eddy entrainment and laminar burn up model. The choice of laminar flame speed and turbulent parameters is validated based on the assessment of the flame speed ratio (4.5 ± 0.5 for naturally aspirated operation, turbulent Reynolds number of 2500 ± 250 and 9.0 ± 1.0 for turbocharged operation, turbulent Reynolds number of 5250 ± 250). In the estimation of laminar flame speed, the limitation of GRIMech 3.0 mechanism for H2-CO-CH4 systems is explicitly established and GRIMech 2.11 is used to arrive at experimentally comparable results. In-cylinder engine simulation results covering parametric variation of load, ignition angle and mixture quality, for engine natural gas fuelled naturally aspirated operation and producer gas fuelled naturally aspirated and turbocharged after cooled are compared with experimental results. The quasi dimensional analysis is extended to simulate end gas auto-ignition and is validated by using experimental manifold conditions for turbocharged operation for which knock has been observed. Extending the model to a Waukesha cooperative fuels research engine, motor methane number of 110 is reported for standard composition producer gas. The use of quasi dimensional models with end gas reaction kinetics enabled for knock rating of fuels represents first of its kind initiative.

Page generated in 0.0367 seconds