21 |
Non-compact geometric flows: long time existence and type II singularitiesChoi, Beomjun January 2019 (has links)
In this work, we study how solutions of certain non-compact geometric flows of fast-diffusion type interact with their asymptotic geometries at infinity. In the first part, we show the long time existence theorem to the inverse mean curvature flow for complete convex non-compact initial hypersurfaces. The existence and behavior of a solution is tied with the evolution of its tangent cone at infinity. In particular, the maximal time of existence can be written in terms of the area ratio between the initial tangent cone at infinity and the flat hyperplane. In the second part, we study the formation of type II singularity for non-compact Yamabe flow. Assuming the initial metric is conformally flat and asymptotic to a cylinder, we show the higher order asymptotics of the metric determines the curvature blow-up rates at the tip in its first singular time. We also show the singularities of such solutions are modeled on rotationally symmetric steady gradient solitons.
|
22 |
The tropical Jacobian of an elliptic curve is the group S¹(Q) /Wade, Darryl Gene, January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mathematics, 2008. / Includes bibliographical references (p. 45-46).
|
23 |
The role of the Van Hove singularity in the time evolution of electronic states in a low-dimensional superlattice semiconductorGarmon, Kenneth Sterling 28 August 2008 (has links)
Not available / text
|
24 |
The role of the Van Hove singularity in the time evolution of electronic states in a low-dimensional superlattice semiconductorGarmon, Kenneth Sterling, 1978- 18 August 2011 (has links)
Not available / text
|
25 |
Ιδιομορφίες στην κλασική μηχανική : προβλήματα ολοκληρωσιμότητας / Singularities in classical mechanics : integrability problemsΝικολοβιένης, Σπυρίδων 01 December 2009 (has links)
Μελετούμε το πρόβλημα ολοκληρωσιμότητας διαφορικών 1-μορφών. Αφού αναφερθούμε στις κλασικές περιπτώσεις των ακριβών 1-μορφών και του ολοκληρωτικού παράγοντα, αποδεικνύουμε το περίφημο Λήμμα του Poincaré, καθώς και το Θεώρημα Ολοκληρωσιμότητας του Frobenious. Η εργασία ολοκληρώνεται με παραδείγματα μορφων που εμφανίζουν ιδιομορφίες. / We study the problem of integrability of differential 1-forms. After the classical cases of exact forms and the integrating factor we prove the famous lemma of Poincaré and the Frobenious integrability theorem. Examples of forms with singularities consist the last part of this study.
|
26 |
Desingularization properties of the Nash blow-up process.Rebassoo, Vaho. January 1977 (has links)
Thesis (Ph. D.)--University of Washington. / Bibliography: l. 73-74.
|
27 |
New approaches to space-time singularities /Scott, Susan M. January 1991 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Physics and Mathematical Physics, 1992. / Includes bibliographical references.
|
28 |
Numerical investigations of singularity formation in non-linear wave equations in the adiabatic limit /Linhart, Jean-Marie, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaf 136). Available also in a digital version from Dissertation Abstracts.
|
29 |
The role of the Van Hove singularity in the time evolution of electronic states in a low-dimensional superlattice semiconductorGarmon, Kenneth Sterling, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
30 |
On singularities of generic projection hypersurfaces /Doherty, Davis C. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 63-66).
|
Page generated in 0.0294 seconds