• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CD47–SIRPα : an interaction of importance for bone cell differentiation / CD47–SIRPα : en interaktion av betydelse för skelettcellers differentiering

Koskinen, Cecilia January 2014 (has links)
Bone tissue is continuously remodeled by bone-forming osteoblasts and bone-resorbing osteoclasts, in processes tightly regulated by hormones, cytokines and growth factors. CD47, a ubiquitously expressed protein, and one of its ligands, signal-regulatory protein alpha (SIRPα), are two cell-surface proteins belonging to the immunoglobulin (Ig)-superfamily. The interaction between CD47 and SIRPα is important for, amongst other processes, the fusion of macrophages into giant cells, which are closely related to osteoclasts. The aim of the present study was to gain knowledge about the role of CD47–SIRPα interaction and resultant downstream signaling pathways in bone cell differentiation, formation and function. The addition of antibodies against CD47 or SIRPα inhibited the formation of multinucleated osteoclasts from bone marrow monocytes (BMMs) in culture. Moreover, a significant decrease in the number of osteoclasts was detected in CD47-/- BMM cultures compared to CD47+/+ cultures. In line with these in vitro results, we found fewer osteoclasts in vivo in the trabecular bone of CD47-/- mice, as compared to CD47+/+ bone. Interestingly, an extended analysis of the trabecular bone of CD47-/- mice revealed that the bone volume, mineralizing surface, mineral apposition rate, bone formation rate and osteoblast number were also significantly reduced compared with CD47+/+ mice, indicating the importance of CD47 in osteoblast differentiation. In vitro studies of bone marrow stromal (BMS) cells from CD47-/- mice or SIRPα-mutant mice (mice lacking the signaling domain of SIRPa) showed a blunted expression of osteoblast-associated genes. Moreover, these altered genotypes were associated with reduced activity of the bone mineralization-associated enzyme alkaline phosphatase as well as a reduced ability to form mineral. To reveal the molecular mechanisms by which CD47 activation of SIRPα is important for BMS cell differentiation, we studied signaling downstream of SIRPα in the absence of CD47. In BMS cells lacking CD47, a considerable reduction in the levels of tyrosine phosphorylated SIRPα was detected, and the subsequent recruitment of the Src-homology-2 (SH2) domain-containing protein tyrosine phosphatase (SHP-2)–phosphoinositide 3-kinase (PI3K)–Akt2 signaling module was nearly abolished. In conclusion, the interaction between CD47 and SIRPα results in the activation of the SHP-2–PI3K–Akt2 pathway, which is necessary for normal osteoblast differentiation. In CD47-/- mice and SIRPα-mutant mice, this interaction is perturbed, which prevents normal osteoblast differentiation and subsequent mineral formation. In addition, the altered BMS cell phenotype results in an impaired ability to stimulate osteoclast differentiation.
2

Mechanisms involved in macrophage phagocytosis of apoptotic cells

Nilsson, Anna January 2009 (has links)
Efficient removal of apoptotic cells is critical for development, tissue remodelling, maintenance of homeostasis, and response to injury. Phagocytosis of apoptotic cells is mediated by many phagocytic receptors, soluble bridging molecules, and pro-phagocytic ligands on the surface of apoptotic cells. Macrophage phagocytosis in general is controlled by stimulatory and inhibitory mechanisms. An example of the latter mechanism is that mediated by the cell surface glycoprotein CD47, which by binding to the inhibitory receptor Signal Regulatory Protein alpha (SIRPα) on macrophages, is known to inhibit phagocytosis of viable host cells. The studies of the present thesis aimed at investigating possible changes to CD47 on apoptotic cells, which could influence their elimination by macrophages. The endoplasmatic protein calreticulin (CRT), in conjunction with Low density lipoprotein Receptorrelated Protein 1 (LRP1) on the phagocyte, can act as a receptor for collectin family members and mediate uptake of apoptotic cells. However, CRT itself was found to also be expressed on the surface of many viable cell types, and the CRT expression increased on apoptotic cells. By using antibodies to LRP1 or receptor‐associated protein (RAP), an antagonist blocking LRP1 ligand binding, we found that CRT on target cells could interact in trans with LRP1 on a phagocyte and stimulate phagocytosis. CD47 on the target cell inhibited LRP1‐mediated phagocytosis of viable cells (e.g. lymphocytes or erythtocytes), but not that of apoptotic cells. The inability of CD47 on apoptotic cells to inhibit LRP1‐ mediated phagocytosis could be explained in two ways: 1) Some apoptotic cell types (fibroblasts and neutrophils, but not Jurkat T cells) lost CD47 from the cell surface, or 2) CD47 is evenly distributed on the surface of viable cells, while it was redistributed into patches on apoptotic cells, segregated away from areas of the plasma membrane where the pro‐phagocytic ligands CRT and phoaphatidylserine (PS) were concentrated. Apoptotic murine thymocytes also showed a patched distribution of CD47, but no significant loss of the receptor. However, both PS‐independent and PS‐dependent macrophage phagocytosis of apoptotic CD47‐/‐ thymocytes was less efficient than uptake of apoptotic wild‐type (wt) thymocytes. This contradictory finding was explained by the fact that CD47 on apoptotic thymocytes did no longer inhibit phagocytosis, but rather mediated binding of the apoptotic cell to the macrophage. These effects could in part be dependent on the apoptotic cell type, since uptake of experimentally senescent PS+ wt or CD47‐/‐ erythrocytes by macrophage in vitro, or by dendritic cells (DC) in vivo, were the same. In vivo, PS+ erythrocytes were predominantly trapped by marginal zone macrophages and by CD8+ CD207+ DCs in the splenic marginal zone. DCs which had taken up PS+ erythrocytes showed a slight increase in expression levels of CD40, CD86 and MHC class II. These findings suggest that PS+ erythrocytes may be recognized by splenic macrophages and DCs in ways similar to that reported for apoptotic T cells. Uptake of senescent erythrocytes by DCs may serve as an important mechanism to maintain self‐tolerance to erythrocyte antigens, and defects in this function may facilitate development of AIHA. Glucocorticoids are used to treat inflammatory conditions and can enhance macrophage uptake of apoptotic cells. We found that the glucocorticoid dexamethasone time‐ and dose‐dependently stimulated macrophage cell surface LRP1 expression. Dexamethasone‐stimulated macrophages also showed enhanced phagocytosis of apoptotic thymocytes and unopsonized viable CD47‐/‐ erythrocytes. In summary, LRP1 can mediate phagocytosis of both viable and apoptotic cells by binding CRT on the target cell. Macrophage expression of LRP1 is increased by glucocorticoids, which could be one explanation for the anti‐inflammatory role of glucocorticoids. While CD47 on viable cells efficiently inhibits phagocytosis in macrophages, CD47 on apoptotic cells does not and can sometimes even promote their removal.

Page generated in 0.0376 seconds