1 |
Corticosterone up-Regulates Expression and Function of Norepinephrine Transporter in SK-N-BE(2)C CellsSun, Zhongwen, Fan, Yan, Zha, Qinqin, Zhu, Meng Y. 01 April 2010 (has links)
Glucocorticoids affect cellular and molecular events in brains by modulating the expression of many genes during stress. In the present study, we examined the regulatory effect of corticosterone on the expression and function of the norepinephrine transporter (NET) in vitro. The results show that exposure of SK-N-BE(2)C cells to corticosterone for 14 days significantly increased mRNA (up to 43%) and protein (up to 71%) levels of NET in the concentration- dependent manner. Longer exposure (21 days) resulted in greater increases in the levels of mRNAs (up to about 160%) and proteins (up to about 250%) of the NET. The up-regulatory effect of corticosterone on NET expression lasted a persistent period after cessation of exposure. Associated with the corticosterone-induced enhancement in NET expression, there was a parallel increase in the uptake of [3H]norepinephrine by SK-N-BE(2)C cells. Increased NET expression and function were abolished after exposure of cells to corticosterone in combination with mifepristone or spironolactone, two specific antagonists of corticosteroid receptors. This is consistent with the hypothesis that corticosterone-induced NET up-regulation is mediated by corticosteroid receptors. Nevertheless, there was no synergistic effect for a combination of both corticosteroid receptor antagonists. A similar up-regulation of NET protein levels was also observed after exposing PC12 cells to corticosterone. The present findings demonstrate that corticosterone up-regulates the expression and function of NET in vitro, indicating the action of corticosterone on the noradrenergic phenotype may play an important role in the correlation between stress and the development of depression.
|
2 |
Effects of Transcription Factors phox2 on Expression of Norepinephrine Transporter and Dopamine β-Hydroxylase in SK-N-Be(2)C CellsFan, Yan, Huang, Jingjing, Kieran, Niamh, Zhu, Meng Yang 01 September 2009 (has links)
Phox2a and Phox2b are two homeodomain proteins that control the differentiation of noradrenergic neurons during embryogenesis. In the present study, we examined the possible effect of Phox2a/2b on the in vitro expression of the norepinephrine transporter (NET) and dopamine β-hydroxylase (DBH), two important markers of the noradrenergic system. SK-N-BE(2)C cells were transfected with cDNAs or short hairpin RNAs specific to the human Phox2a and Phox2b genes. Transfection of 0.1 to 5 μg of cDNAs of Phox2a or Phox2b significantly increased mRNA and protein levels of NET and DBH in a concentration-dependent manner. As a consequence of the enhanced expression of NET after transfection, there was a parallel increase in the uptake of [ 3H]norepinephrine. Co-transfection of Phox2a and Phox2b did not further increase the expression of noradrenergic markers when compared with transfection of either Phox2a or Phox2b alone. Transfection of shRNAs specific to Phox2a or Phox2b genes significantly reduced mRNA and protein levels of NET and DBH after shutdown of endogenous Phox2, which was accompanied by a decreased [3H]norepinephrine uptake. Furthermore, there was an additive effect after cotransfection with both shRNAs specific to Phox2a or Phox2b genes on NET mRNA levels. Finally, the reduced DBH expression caused by the shRNA specific to Phox2a could be reversed by transfection with Phox2b cDNA and vice versa. The present findings verify the determinant role of Phox2a and Phox2b on the expression and function of NET and DBH in vitro. Further clarifying the regulatory role of these two transcription factors on key proteins of the noradrenergic system may open a new avenue for therapeutics of aging-caused dysfunction of the noradrenergic system.
|
Page generated in 0.0557 seconds