11 |
The Effects of Zinc on the Central Dopaminergic System of Rats Prenatally Exposed to CadmiumDurczok, A., Szkilnik, R., Nowak, P., Labus,, Dabrowska, J., Bortel, A., Zagził, T., Swoboda, M., Rycerski, W., Winnicka, H., Kostrzewa, R. M., Kwieciński, A., Brus, R. 21 September 2005 (has links)
On the morning of the first day of pregnancy, Wistar rats were administered a single IP injection of either zinc sulfate (10.0 mg/kg) or saline. For the remainder of pregnancy, half the rats in each group then consumed filtered tap water while the other half consumed filtered tap water with 50 ppm of cadmium (CdCl2). At eight weeks after birth, the behavioral profile of male offspring was assessed in the following way: Apomorphine (non-selective dopamine receptor agonist), (+)-7-hydroxy-2-(di-n-propylamino) tetralin (7-OH-DPAT) (D3 agonist) and (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF 38393) (D1 agonist) were used to evaluate stereotyped behavior, yawning activity and oral movements - indices for these respective agonists. In addition, two dopamine receptor antagonists, haloperidol (D2 antagonist) and 7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzapine (SCH 23390) (D1 antagonist) were used to evaluate cataleptogenic activity. Additional behavioral parameters studied were locomotor activity, irritability and reaction to a painful stimulus. Dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT) were quantified in the striatum, hippocampus and in the frontal cortex of the brain by means of HPLC/ED technique. In addition, cadmium levels were analyzed in the brain, liver, kidney and bone of newborn rats. Our results indicate that prenatal exposure of pregnant rats to cadmium produced alterations in the reactivity of central dopamine receptors and modulated the level of dopamine and its metabolites in the offsprings' brains. A single injection of zinc, preceding cadmium consumption, attenuated some of the effects of cadmium on the offsprings' dopaminergic system. Zinc also reduced cadmium deposition in the brain, kidney and bone, but enhanced its accumulation in liver. In summary, zinc may exert some neuroprotective effects against cadmium neurotoxicity.
|
12 |
Serotonin (5-HT) Systems Mediate Dopamine (DA) Receptor SupersensitivityKostrzewa, R. M., Gong, L., Brus, R. 01 January 1993 (has links)
No description available.
|
13 |
Neonatal 6‐hydroxydopamine and Adult SKF 38393 Treatments Alter Dopamine D<sub>1</sub> Receptor mRNA Levels: Absence of Other Neurochemical Associations With the Enhanced Behavioral Responses of Lesioned RatsGong, Li, Kostrzewa, Richard M., Li, Chuanfu 01 January 1994 (has links)
Abstract: To study potential biochemical correlates of dopamine (DA) and serotonin receptor supersensitivity, rats were lesioned at 3 days after birth with 6‐hydroxydopamine (6‐OHDA; 67 µg in each lateral ventricle; desipramine pretreatment, 20 mg/kg i.p., 1 h) and then sensitized with the DA D1 agonist, SKF 38393 HCl (3.0 mg/kg i.p. per day) either ontogenetically (daily, for 28 consecutive days from birth) and/or in adulthood (four weekly injections, 6–9 weeks from birth). Controls received vehicle in place of 6‐OHDA or SKF 38393. Enhanced locomotor responses were observed after SKF 38393 at 6 weeks, only in rats that received SKF 38393 + 6‐OHDA in ontogeny. Locomotor responses were further enhanced in this group after the last of four weekly SKF 38393 injections at the 9th week. These weekly SKF 38393 treatments also produced enhanced responses in 6‐OHDA rats that did not receive SKF 38393 in ontogeny. When striata were studied at 11 weeks, the percentages of high and low affinity DA D1 binding sites were not altered. Basal as well as DA‐, NaF‐, and forskolin‐stimulated adenylyl cyclase activities also were not changed. Dot blot analysis showed that there was a reduction of mRNA levels for DA D1, but not serotonin1C, receptors in the 6‐OHDA groups. However, SKF 38393 at 6–9 weeks eliminated this alteration. Based on these findings it can be proposed that supersensitization may be a consequence of altered neuronal cross talk rather than an imbalance of receptor elements per se.
|
14 |
Modulation of Central Dopamine Receptor Reactivity in the Rat, by Nitric Oxide Donors and Inhibitor: Behavioral StudiesKasperska, Alicja, Brus, Ryszard, Szkilnik, Ryszard, Oswiecimska, Joanna, Kostrzewa, Richard M., Shani, Jashovam 01 December 1999 (has links)
Nitric acid has been implicated in a variety of physiological functions of the mammalian brain, and in a large number of its pathologies. Recently we have demonstrated that a nitric oxide donor (L-arginine) and a nitric-oxide-synthase-inhibitor (nitro-L-arginine-methyl-ester) modified the response of central al dopamine D 1 and D 3 receptors to some of their agonists. In the present study we demonstrate the modulatory effect of L-arginine, nitro-L-arginine-methyl-ester and molsidomine (another nitric oxide donor) on the reactivity of the central dopamine receptors to specific agonists and antagonists. The agonists tested were SKF-38393, 7-OH-DPAT and quinpirole, and the antagonists - SCH-23390 and haloperidol. They were evaluated in the rat by the following behavioral methods: locomotor activity, locomotor coordination, rearings and cataleptogenic activity (D 2 modulation); grooming time (D 1 activation); yawning (D 3 activation) and ethanol- and phenobarbital-sleeping-time parameters after SKF-38393 or quinpirole pretreatment. Our results suggest that nitro-L-arginine-methyl-ester is effective in modulating the reactivity of the central dopamine receptors D 2, D 1 and D 3, to their agonists and antagonists, and that it is much more effective than L-arginine in regulating the righting reflex after ethanol and phenobarbital, in both female and male mature rats.
|
15 |
Dopamine Receptor SupersensitivityKostrzewa, Richard M. 01 January 1995 (has links)
Dopamine (DA) receptor supersensitivity refers to the phenomenon of an enhanced physiological, behavioral or biochemical response to a DA agonist. Literature related to ontogenetic aspects of this process was reviewed. Neonatal 6-hydroxydopamine (6-OHDA) destruction of rat brain DA neurons produces overt sensitization to D1 agonist-induced oral activity, overt sensitization of some D2 agonist-induced stereotyped behaviors and latent sensitization of D1 agonist-induced locomotor and some stereotyped behaviors. This last process is unmasked by repeated treatments with D1 (homologous "priming") or D2 (heterologous "priming") agonists. A serotonin (5-HT) neurotoxin (5,7-dihydroxytryptamine) and 5-HT2C receptor antagonist (mianserin) attenuate some enhanced behavioral effects of D1 agonists, indicating that 5-HT neurochemical systems influence D1 receptor sensitization. Unlike the relative absence of change in brain D1 receptor number, DA D2 receptor proliferation accompanies D2 sensitization in neonatal 6-OHDA-lesioned rats. Robust D2 receptor supersensitization can also be induced in intact rats by repeated treatments in ontogeny with the D2 agonist quinpirole. In these rats quinpirole treatments produce vertical jumping at 3-5 wk after birth and subsequent enhanced quinpirole-induced antinociception and yawning. The latter is thought to represent D3 receptor sensitization. Except for enhanced D1 agonist-induced expression of c-fos, there are no changes in the receptor or receptor-mediated processes which account for receptor sensitization. Adaptive mechanisms by multiple "in series" neurons with different neurotransmitters may account for the phenomenon known as receptor supersensitivity.
|
Page generated in 0.0177 seconds