• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 85
  • 49
  • 43
  • 14
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 632
  • 632
  • 268
  • 194
  • 138
  • 66
  • 64
  • 59
  • 52
  • 48
  • 47
  • 46
  • 44
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Role of IgE in modulating the expression and function of smMLCK in human airway smooth muscle cells

Balhara, Jyoti 04 April 2012 (has links)
Aberrant phenotypes of airway smooth muscle cells are central to the pathophysiology of asthma. The hypercontractile nature of these cells and hypertrophy are the key reasons for the excessive narrowing of the airways observed in allergic asthma. Although previous studies have indicated a role of enhanced content of smMLCK in modulating the contractile reactivity, as well as an indication of hypertrophy of HASM cells in asthmatic conditions, the effect of IgE on the expression of smMLCK in HASM cells is not fully understood. In this study, we demonstrate that IgE augments the expression of smMLCK at the mRNA and protein level. Inhibition of IgE binding with anti-FcεRI blocking antibody, Syk silencing, pharmacological inhibitors to MAPK (ERK1/2, p38, and JNK) and PI3K significantly diminished the IgE-mediated smMLCK expression in HASM cells. Finally, we found that IgE, similar to metacholine induces the contraction of HASM cells grown on collagen gel matrix. Our data suggest that IgE stimulates the phosphorylation of ERK, P38, STAT3 and induces the dephosphorylation of smMLCK to phosphorylate myosin regulatory light chain in HASM cells. Taken together, our data suggest a modulatory role of IgE in regulating the contractile machinery and hypertrophic phenotype of HASM cells.
92

Oxygen Regulation of Vascular Smooth Muscle Cell Proliferation and Survival

Basu Ray, Julie 03 March 2010 (has links)
Arterial smooth muscle cells (SMCs) from the systemic and pulmonary circulations experience a broad range of oxygen concentrations under physiological conditions. The hypoxic response, however, has been inconsistent, with both enhanced proliferation and growth arrest being reported. This variability precludes a definitive conclusion regarding the role of oxygen tension in arterial disease. In the first part of this study, we determined if hypoxia elicits different proliferative and apoptotic responses in human aortic SMCs (HASMCs) incubated under conditions which do or do not result in cellular ATP depletion and whether these effects are relevant to vascular remodeling in vivo. Gene expression profiling was used to identify potential regulatory pathways. In HASMCs incubated at 3% O2, proliferation and progression through G1/S interphase are enhanced. Incubation at 1% O2 reduced proliferation, delayed G1/S transition, increased apoptosis and cellular ATP levels were reduced. In aorta and mesenteric artery from hypoxia exposed rats, both proliferation and apoptosis are increased after 48hrs. p53 and p21expression is differentially affected in HASMCs incubated at 1% and 3% O2. Hypoxia induces a state of enhanced cell turnover, conferring the ability to remodel the vasculature in response to changing tissue metabolic needs while avoiding the accumulation of mutations that may lead to malignant transformation or abnormal vascular structure formation. A unifying hypothesis in which events at the G1/S transition and apoptosis activation are coordinated by effects on p53, p21, their downstream effector genes and regulatory factors is proposed. Differences in the contractile responses of systemic and pulmonary arterial smooth muscle cells to hypoxia are well studied. Differences in proliferation and survival are anticipated because of differences in embryonal cell origin, oxygen concentrations within their respective microenvironments and in cellular energetics but these responses have not been directly compared. In the second part of the study, human pulmonary arterial SMCs (HPASMCs) proliferated at oxygen concentrations which inhibited cell growth in HASMCs. HPASMCs survived and maintained their intracellular ATP levels at levels of hypoxia sufficient to deplete ATP and induce apoptosis in HASMCs. In vivo studies in rats show proliferation and apoptosis in main or branch PASMCs only after 7 days of hypoxia. VSMCs are able to proliferate under hypoxic conditions as long as cellular ATP levels are maintained. HPASMCs have an enhanced capacity to maintain cellular energy status compared to HASMCs and hence their viability is preserved and the proliferative response predominates at lower oxygen concentrations.
93

Effects of in vitro uniaxial cyclic stretch upon rat aortic smooth muscle cells

Schnetzer, Karen Joan 12 1900 (has links)
No description available.
94

Axial stretch as a means of lengthening arteries : an investigation in organ culture

Davis, Nathan Peter 08 1900 (has links)
No description available.
95

In vitro and in vivo studies of the response of the porcine coronary artery to balloon injury and the effect of ras farnesyltransferase inhibition

Work, Lorraine Margaret January 1999 (has links)
No description available.
96

Role of IgE in modulating the expression and function of smMLCK in human airway smooth muscle cells

Balhara, Jyoti 04 April 2012 (has links)
Aberrant phenotypes of airway smooth muscle cells are central to the pathophysiology of asthma. The hypercontractile nature of these cells and hypertrophy are the key reasons for the excessive narrowing of the airways observed in allergic asthma. Although previous studies have indicated a role of enhanced content of smMLCK in modulating the contractile reactivity, as well as an indication of hypertrophy of HASM cells in asthmatic conditions, the effect of IgE on the expression of smMLCK in HASM cells is not fully understood. In this study, we demonstrate that IgE augments the expression of smMLCK at the mRNA and protein level. Inhibition of IgE binding with anti-FcεRI blocking antibody, Syk silencing, pharmacological inhibitors to MAPK (ERK1/2, p38, and JNK) and PI3K significantly diminished the IgE-mediated smMLCK expression in HASM cells. Finally, we found that IgE, similar to metacholine induces the contraction of HASM cells grown on collagen gel matrix. Our data suggest that IgE stimulates the phosphorylation of ERK, P38, STAT3 and induces the dephosphorylation of smMLCK to phosphorylate myosin regulatory light chain in HASM cells. Taken together, our data suggest a modulatory role of IgE in regulating the contractile machinery and hypertrophic phenotype of HASM cells.
97

Physiological and pharmacological studies of lower urinary tract smooth muscles

Chen, Hong-I. January 1990 (has links)
No description available.
98

Ion channels in the human myometrium

Knock, Gregory Alan January 1999 (has links)
No description available.
99

Roles of activation transcription factor 4 (ATF4) and YrdC in the response of vascular smooth muscle cells to injury

Malabanan, Kristine Paz, Centre for Vascular Research, Faculty of Medicine, UNSW January 2008 (has links)
Neointimal proliferation is a key process underlying many cardiovascular diseases such as atherosclerosis and angioplasty-induced restenosis. Vascular smooth muscle cells (SMC) are significant contributors to the development and stability of the neointimal lesion. This is due, in part, to their capacity to be phenotypically modulated, facilitating SMC proliferation in response to mechanical injury, their subsequent migration, and deposition of extracellular matrix. The aim of this thesis was to characterize the function of two genes identified in our laboratory to be upregulated shortly after mechanical injury of vascular SMC and their exposure to fibroblast growth factor (FGF)-2, an injury-induced cytokine. The first is activation transcription factor (ATF) 4, which is upregulated by FGF-2 and mechanical injury in vascular SMC in vitro, and by balloon-injury in the artery wall. The induction of ATF4 by FGF-2 was shown to be mediated through the PI3K pathway, and preceded by phoshorylation of eIF2alpha, a known upstream effector of ATF4 activation. Knock-down of ATF4 expression inhibited balloon-injury induced neointimal hyperplasia, suggesting that ATF4 is a key player in the SMC response to injury. Furthermore, microarray analysis identified several genes whose transcription in response to FGF-2 may be regulated by ATF4. In particular, this work demonstrates that ATF4 is necessary for VEGF-A upregulation in SMC in response to FGF-2 and mechanical injury in vitro and in the artery wall following balloon-injury. The second is a translation factor, YrdC203. Using confocal fluorescence microscopy, YrdC203 was found to localize partially to the ER, and with RPL12, a component of the 60S ribosomal subunit. Immunoprecipitation studies demonstrate that YrdC203 also interacts with an initiation factor, eIF5B. Mutation of an initiation factor’s signature on the exterior of YrdC203 perturbed its interaction with RPL12 and eIF5B, and inhibited the increase in protein synthesis observed with overexpression of YrdC203. This implicates YrdC203 as a translation factor responsible for ensuring protein synthesis in vascular SMC in response to injury. The present work provides evidence for new molecular mechanisms, transcriptional and translational, regulating the response of vascular SMC to injury. This would provide leads for future therapeutic targets.
100

Interstitial cells of Cajal transcriptional profiling and fate in gastrointestinal dysmotilities /

Chen, Hui. January 2006 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 2006. / "August, 2006." Includes bibliographical references (leaves 111-128). Online version available on the World Wide Web.

Page generated in 0.0373 seconds