• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of GTP-binding proteins in regulated exocytosis

Glenn, Daphne Elizabeth January 1998 (has links)
No description available.
2

Spatial and temporal control of regulated exocytosis by protein and lipid interactions

Dun, Alison January 2013 (has links)
Cellular communication requires the transport of chemical messengers between intracellular compartments and from cell to cell. The regulated exocytosis of a secretory vesicle at the plasma membrane involves the merger of two bilayers, with markedly different lipid composition, within a millisecond time scale. The spatial and temporal control of the protein and lipid complement at these fusion sites is essential. A highly conserved family of proteins are known to drive this fusion event; SNAP-25 and syntaxin-1 (t-SNAREs) associate at the plasma membrane in a 1:1 stoichiometry to provide a binding site for the vesicle-membrane protein synaptobrevin (v-SNARE). The formation of this complex and subsequent fusion requires accessory proteins for efficient calcium-triggered exocytosis; which of these proteins facilitate the initial attachment of vesicle to the plasma membrane prior to fusion is still under debate. Specific sites for vesicle fusion have been proposed and the organisation of lipids and proteins at these fusion sites has been extensively investigated with limited spatial and temporal resolution; however the presence of raft-forming lipids at these sites as well as the arrangement of SNARE proteins at the molecular level is still under contention. The data presented within this thesis aims to elucidate the protein and lipid environment at the fusion site using super-resolution microscopy and advanced vesicle tracking. Under diffraction-limited microscopy the t-SNAREs are visualised as 200 nm homogenous clusters; however I have used single molecule localisation microscopy to reveal a more complex heterogeneous molecular arrangement. Quantification of lipid order exclusively at the plasma membrane provided insight into the influence of cholesterol-induced lipid arrangement on SNAP-25 localisation. In addition the t-SNARE interaction was investigated using TCSPC-FLIM identifying two lipid-order-dependent conformations in distinct clusters at the plasma membrane. Extensive vesicle tracking at optimum sampling rates demonstrated the ‘sampling’ behaviour of LDCVs and allowed characterisation of vesicle fusion sites. In summary I find that vesicles exhibit preference for residence and probably fusion at regions of plasma membrane with a low t-SNARE density; these proteins appear to exert control over exocytosis by adopting alternative conformations that are under cholesterol-induced regulation.
3

The Role of Munc18 Proteins in Physiologic and Pathologic Exocytoses in the Pancreatic Acinar Cell

Lam, Patrick Pak Ling 18 February 2010 (has links)
Distinct membrane fusion events in the polarized pancreatic acinar cell involve highly specific interactions between distinct sets of SNARE proteins forming exocytotic complexes, whose assembly is modulated by distinct Munc18 proteins. The Munc18 isoform responsible for these exocytotic events in the acinar cell is unknown. Here, I postulate Munc18b to regulate apical exocytosis in the acinar cell. Current dogma for the pathogenesis of acute pancreatitis, including alcoholic pancreatitis, is mis-targeting and deregulated fusion of zymogen granules with lysosomal bodies in the acinar cells. This derangement results in premature activation of proteolytic zymogens and autophagic digestion of cellular contents. I have hypothesized an alternate mechanism, which is pathologic exocytosis occurring at the basolateral plasma membrane, and further propose Munc18c to mediate this process in alcoholic pancreatitis. The aims of this thesis are to demonstrate the roles of Munc18b and Munc18c in regulated apical exocytosis and pathologic basolateral exocytosis underling alcoholic pancreatitis, respectively. In Chapter Three, using both real-time and static imaging techniques and biochemical tools, I demonstrated that Munc18c is dissociated from the acinar basal plasma membrane (BPM) when stimulated with postprandial CCK8 preceding preincubation of acini with postprandial 20-50mM ethanol concentrations. This activated Syntaxin (Syn)-4 and SNAP-23 on the BPM to complex with VAMP proteins on the granule to form the exocytotic SNARE complex that triggered basolateral exocytosis. This molecular mechanism of pathologic basolateral exocytosis was recapitulated in an Ethanol-diet rat model of pancreatitis. In Chapter Four, I determined Munc18b to be in the apical pole of the acinar cell to appropriately bind cognate Syn-2 and Syn-3 in the apical PM and ZGs. Here, I examined the structure-function of Munc18b on amylase secretion by employing Munc18b mutants with distinct affinities to Syn-2 and Syn-3. In Chapter Five, I discovered a novel EF-hand Ca2+-binding protein called Cab45b, which binds Munc18b to regulate its membrane targeting and interactions with Syntaxins in the acinar cell in a manner that influenced Ca2+-induced amylase release. Taken together, these studies clarify our understanding of the role of Munc18 proteins involved in regulated and pathologic membrane fusion events underlying physiologic digestive enzyme secretion and clinical alcoholic pancreatitis.
4

The Role of Munc18 Proteins in Physiologic and Pathologic Exocytoses in the Pancreatic Acinar Cell

Lam, Patrick Pak Ling 18 February 2010 (has links)
Distinct membrane fusion events in the polarized pancreatic acinar cell involve highly specific interactions between distinct sets of SNARE proteins forming exocytotic complexes, whose assembly is modulated by distinct Munc18 proteins. The Munc18 isoform responsible for these exocytotic events in the acinar cell is unknown. Here, I postulate Munc18b to regulate apical exocytosis in the acinar cell. Current dogma for the pathogenesis of acute pancreatitis, including alcoholic pancreatitis, is mis-targeting and deregulated fusion of zymogen granules with lysosomal bodies in the acinar cells. This derangement results in premature activation of proteolytic zymogens and autophagic digestion of cellular contents. I have hypothesized an alternate mechanism, which is pathologic exocytosis occurring at the basolateral plasma membrane, and further propose Munc18c to mediate this process in alcoholic pancreatitis. The aims of this thesis are to demonstrate the roles of Munc18b and Munc18c in regulated apical exocytosis and pathologic basolateral exocytosis underling alcoholic pancreatitis, respectively. In Chapter Three, using both real-time and static imaging techniques and biochemical tools, I demonstrated that Munc18c is dissociated from the acinar basal plasma membrane (BPM) when stimulated with postprandial CCK8 preceding preincubation of acini with postprandial 20-50mM ethanol concentrations. This activated Syntaxin (Syn)-4 and SNAP-23 on the BPM to complex with VAMP proteins on the granule to form the exocytotic SNARE complex that triggered basolateral exocytosis. This molecular mechanism of pathologic basolateral exocytosis was recapitulated in an Ethanol-diet rat model of pancreatitis. In Chapter Four, I determined Munc18b to be in the apical pole of the acinar cell to appropriately bind cognate Syn-2 and Syn-3 in the apical PM and ZGs. Here, I examined the structure-function of Munc18b on amylase secretion by employing Munc18b mutants with distinct affinities to Syn-2 and Syn-3. In Chapter Five, I discovered a novel EF-hand Ca2+-binding protein called Cab45b, which binds Munc18b to regulate its membrane targeting and interactions with Syntaxins in the acinar cell in a manner that influenced Ca2+-induced amylase release. Taken together, these studies clarify our understanding of the role of Munc18 proteins involved in regulated and pathologic membrane fusion events underlying physiologic digestive enzyme secretion and clinical alcoholic pancreatitis.
5

Development of new methods in fluorescence microscopy

Lin, Chao-Chen 18 May 2015 (has links)
No description available.
6

Structural studies of Compelxin/SNARE internactions

Lee, Daeho January 2008 (has links)
Thesis (M.S.) -- University of Texas Southwestern Medical Center at Dallas, 2008. / Vita. Bibliography: p. 80-88
7

Protein trafficking and 4.1R relocalization in Plasmodium falciparum-infected erythrocytes

Parish, Lindsay A. January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed on Sept. 9, 2009). Includes bibliographical references.
8

VPS45p as a Model System for Elucidation of SEC1/MUNC18 Protein Function: A Dissertation

Furgason, Melonnie Lynn Marie 09 December 2008 (has links)
Vesicular trafficking, the movement of vesicles between organelles and the plasma membrane for secretion, consists of multiple highly regulated processes. Many protein families function as specificity and regulatory determinants to ensure correct vesicle targeting and timing of trafficking events. The SNARE proteins dock and fuse vesicles to their target membranes. Sec1/Munc18 (SM) proteins regulate membrane fusion through interactions with the SNAREs—SM proteins have been shown to act as both inhibitors and stimulators of SNARE assembly and membrane fusion. However, the details of these SM protein functions are not understood. Constructing a model of SM protein function has been challenging due to the various modes of interactions reported between SM proteins and their SNAREs. SM proteins interact with their cognate SNAREs and SNARE complexes through several distinct modes. The most conserved mode is an interaction with the syntaxin N-peptide; other modes of binding, such as the syntaxin closed conformation, are hypothesized to be specific for specialized cell types. In order to elucidate the general function of SM proteins, I investigated the function of the endosomal SM protein Vps45p by analyzing its interactions with its cognate syntaxin Tlg2p and its role in SNARE assembly. I had two main hypotheses: that the Tlg2p N-peptide does not solely mediate the interaction between Vps45p and Tlg2p; and that Vps45p functions to stimulate SNARE complex assembly. I systematically mapped the interaction between Vps45p and Tlg2p using various Tlg2p truncations containing the different domains of Tlg2p and discovered a second binding site on Tlg2p that corresponds to the closed conformation. The neuronal SM-syntaxin pair interacts in a similar manner, indicating that this interaction mode is conserved. To characterize the closed conformation binding mode further, and determine its relationship to the N-peptide binding mode, I developed a quantitative fluorescent electrophoretic mobility shift assay. Results indicate that these two sites do not bind simultaneously and that the N-peptide binding modulates the closed conformation affinity. Furthermore, I monitored the effect of Vps45p on SNARE complex assembly using size exclusion chromatography. Under the conditions tested, Vps45p did not appear to stimulate SNARE complex assembly. The work presented here addresses several puzzling issues in the field and significantly contributes to the construction of a new mechanistic model for SM protein function. In this new model, the SM protein is recruited to the membrane by its interaction with the syntaxin N-peptide. The SM protein then binds the syntaxin closed conformation thus inhibiting SNARE complex assembly. Upon dissociation of the SM protein from the closed conformation, an event perhaps regulated by the SM protein, syntaxin opens and interacts with the other SNAREs to form a SNARE complex. Fusion ensues, stimulated by the SM protein.
9

Midbody Anchoring of SNARE and Exocyst Complexes by Centriolin is Required for Completion of Cytokinesis: A Dissertation

Gromley, Adam Scott 17 June 2004 (has links)
Although much progress has been made in understanding the events that lead to successful cell division, many details of this process remain a mystery. This dissertation presents findings which help to explain events that occur in the latest stages of cytokinesis, with an emphasis on the role of centrosome proteins. The first chapter introduces the novel centrosome protein centriolin. We show that this protein is localized specifically to the subdistal appendages of the maternal centriole in interphase, and it localizes to the midbody during cytokinesis. Disruption of this protein results in a unique cytokinesis defect in which cleavage furrow formation and ingression appear normal, but the cells remain connected by a thin intracellular bridge for extended periods of time. These results lead us to the conclusion that centriolin has an important function in cytokinesis. The second chapter describes our attempt to identify centriolin interacting partners. A yeast two hybrid screen was performed, and the results of this screen revealed an interaction between centriolin and proteins involved in vesicle target specificity and fusion. Further studies of these proteins revealed a novel localization to the midbody in cycling cells and a novel function in the final stages of cytokinesis, similar to centriolin. The third chapter discusses my attempts to clone and characterize a novel GTPase Activating Protein (GAP), which was also discovered in the screen for centriolin interacting proteins.
10

Prolactina potencializa a secreção de insulina via formação do complexo SNARE em ilhotas pancreaticas / Prolactin modulates the insulin secretion by SNARE complex formation in neonatal rat islets

Cunha, Daniel Andrade da 28 September 2006 (has links)
Orientador: Antonio Carlos Boschero / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-08T03:25:29Z (GMT). No. of bitstreams: 1 Cunha_DanielAndradeda_D.pdf: 2004407 bytes, checksum: 40e252218ab6f8007c9bfb5afde02a52 (MD5) Previous issue date: 2006 / Resumo: Prolactina induz a maturação da resposta secretória das células B pancreáticas em ilhotas de ratos neonatos in vitro. Assim, o objetivo deste trabalho foi avaliar se a maturação na resposta a glicose, induzida pela prolactina, está associada a alterações na expressão, associação e fosforilação de proteínas envolvidas na mobilização e extrusão dos grânulos de insulina. Para isso, ilhotas pancreáticas de ratos neonatos foram cultivadas por cinco dias em presença de prolactina e após extração do RNA e proteína total foram realizados RT-PCR e western blot. Observamos aumento na expressão gênica e protéica da MAP-2 e cinesina em ilhotas cultivadas com prolactina. Analisamos também a associação e fosforilação através de imunoprecipitação seguido de western blot de proteínas SNARE e MAP-2/cinesina em ilhotas estimuladas agudamente (20 min) com prolactina. Prolactina aumentou a associação entre proteínas SNARE e MAP-2/cinesina e reduziu a ligação entre sintaxina IA/munc-I8. Fosforilação em resíduos serina das proteínas SNAP-25, sintaxina IA, munc-I8 e MAP-2 encontravam-se aumentadas enquanto que da cinesina foi diminuída, em ilhotas estimuladas com prolactina. Ainda, foi observado aumento na formação do complexo SNARE em ilhotas agudamente estimuladas com prolactina, 22 mM de glicose, 40 de mM K+, 200 J.lMde carbacol e I J.lMde PMA (ativador da PKC). A inibição da via da MAP cinase, por PD098059, bloqueou a formação do complexo SNARE e fosforilação da sintaxina induzida por prolactina. Desta forma, podemos concluir que prolactina auxilia na maturação das células B por aumentar a expressão, fosforilação e associação de proteínas que compõem a maquinaria de extrusão dos grânulos de insulina, provavelmente via MAP cinase/PKC / Abstract: Prolactin induces maturation of insulin secretion in cultured neonatal rat islets. In this study, we investigated whether the improved secretory response to glucose caused by prolactin involves alteration in the expression, association and phosphorylation of several proteins that participate in these processes. Messenger RNA was extracted from neonatal rat islets cultured for five days in the presence of prolactin and reverse transcribed. Gene expression was analyzed by semi-quantitative RT-PCR and by western blotting for proteins. The gene transcription and protein expression of kinesin and MAP-2 were increased in prolactin-treated islets compared to the controls. The association and phosphorylation of proteins was analyzed by immunoprecipitation followed by western blotting, after acute exposure to prolactin. Prolactin increased the association between SNARE proteins and kinesin/MAP-2 while the association of munc-I8/syntaxin IA was decreased. Serine phosphorylation of SNAP-25, syntaxin IA, munc-18, MAP-2 was significantly higher whereas kinesin phosphorylation was decreased in prolactintreated islets. There was an increase in SNARE complex formation in islets stimulated with prolactin, 22 mM glucose, 40 mM K+, 200 f.lMcarbachol and 1 f.lMPMA (pKC activator). The prolactin-induced increase in the formation of SNARE complex and syntaxin IA phosphorylation was inhibited by PD098059, a blocker of the MAPK pathway. These findings indicate that prolactin primes pancreatic B-cells to release insulin by increasing the expression and phosphorylation/association of proteins implicated in the secretory machinery, probably via the MAPKlPKC pathway / Doutorado / Fisiologia / Doutor em Biologia Funcional e Molecular

Page generated in 0.0327 seconds