• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 67
  • 7
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 238
  • 238
  • 135
  • 90
  • 82
  • 52
  • 50
  • 44
  • 43
  • 38
  • 37
  • 36
  • 35
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Gerenciamento de variabilidade de linha de produtos de software com utilização de objetos adaptáveis e reflexão. / Variability management of software product line using adaptive object model and reflection.

Luciana Akemi Burgareli 04 August 2009 (has links)
A abordagem de linha de produtos de software oferece benefícios ao desenvolvimento de software como economia, qualidade e desenvolvimento rápido, pois se baseia em reuso de arquitetura de software mais planejado e direcionado a um domínio específico. Neste contexto, o gerenciamento da variabilidade é uma questão chave e desafiadora, já que esta atividade auxilia a identificação, projeto e implementação dos novos produtos derivados da linha de produtos de software. O objetivo deste trabalho é definir um processo de gerenciamento de variabilidade de linha de produtos de software. Este processo, denominado GVLPS, identifica a variabilidade, extraindo as variantes a partir de diagramas de casos de uso e modelando-as através de features, especifica a variabilidade identificada e utiliza como suporte, na criação de variantes, um mecanismo de variabilidade baseado em modelos de objetos adaptáveis e em reflexão. A aplicação do processo é realizada através de um estudo de caso sobre o software de um veículo espacial hipotético, o Lançador de Satélites Brasileiro (LSB). / The Software Product Line approach offers benefits such as savings, large-scale productivity and increased product quality to the software development because it is based on software architecture reuse which is more planned and aimed to a specific domain. The management of variability is a key and challenging issue, since this activity helps identifying, designing and implementing new products derived from software products line. This work defines a process for the variability management of software product line, called GVLPS. After modeling the variability, extracting the variants from use case diagrams and features, the next step is to specify the variability that was identified. Finally, the proposed process uses a variability mechanism based on adaptive object model and reflection as support in the creation of variants. The proposed process uses as case study the software system of a hypothetic space vehicle, the Brazilian Satellites Launcher (LSB).
102

Supporting feature model configuration based on multi-stakeholder preferences

Stein, Jacob January 2015 (has links)
Configuração modelo de features é conhecida por ser uma atividade complexa, demorada e propensa a erros. Esta atividade torna-se ainda mais complicada quando envolve múltiplas partes interessadas no processo de configuração. Trabalhos de pesquisa têm proposto abordagens para ajudar na configuração de modelo de features, mas elas dependem de processos sistemáticos que restringem as decisões de alguns dos stakeholders. Neste trabalho, propomos uma nova abordagem para melhorar o processo de configuração multi-stakeholder, considerando as preferências dos stakeholders expressas através de restrições duras e brandas. Com base em tais preferências, recomendamos diferentes configurações de produto utilizando diferentes estratégias da teoria da escolha social. Nossa abordagem é implementada em uma ferramenta chamada SACRES, que permite criar grupos de stakeholders, especificar preferências dos stakeholders sobre uma configuração e gerar as configurações ideais. Realizamos um estudo empírico para avaliar a eficácia de nossas estratégias no que diz respeito à satisfação individual e justiça entre todos os stakeholders. Os resultados obtidos provem evidência de que estratégias em particular possuem melhor performance em relação à satisfação de grupo, chamadas average e multiplicative considerando as pontuações atribuídas pelos participantes e complexidade computacional. Nossos resultados são relevantes não só no contexto de Linha de Produto de Software, mas também para a Teoria da Escolha Social, dada a instanciação de estratégias de escolha social em um problema prático. / Feature model con guration is known to be a hard, error-prone and timeconsuming activity. This activity gets even more complicated when it involves multiple stakeholders in the con guration process. Research work has proposed approaches to aid multi-stakeholder feature model con guration, but they rely on systematic processes that constraint decisions of some of the stakeholders. In this dissertation, we propose a novel approach to improve the multi-stakeholder con guration process, considering stakeholders' preferences expressed through both hard and soft constraints. Based on such preferences, we recommend di erent product con gurations using di erent strategies from the social choice theory. Our approach is implemented in a tool named SACRES, which allows creation of stakeholder groups, speci cation of stakeholder preferences over a con guration and generation of optimal con guration. We conducted an empirical study to evaluate the e ectiveness of our strategies with respect to individual stakeholder satisfaction and fairness among all stakeholders. The obtained results provide evidence that particular strategies perform best with respect to group satisfaction, namely average and multiplicative, considering the scores given by the participants and computational complexity. Our results are relevant not only in the context software product lines, but also in the context of social choice theory, given the instantiation of social choice strategies in a practical problem.
103

Estudo e definição de uma linha de produtos de software para o desenvolvimento de aplicações educacionais móveis / Study and definition of a software product line for the development of mobile learning applications

Falvo Júnior, Venilton 07 April 2015 (has links)
A popularização dos dispositivos móveis em todas as camadas sociais tem motivado o desenvolvimento de aplicações educacionais móveis, denominadas aplicações de m-learning. Neste cenário, as aplicações existentes, mesmo possuindo diversos benefícios e facilidades no que diz respeito ao ensino e aprendizagem, apresentam problemas e desafios relacionados, sobretudo no que se refere ao desenvolvimento, reuso e padronização arquitetural. Por outro lado, na vertente do reúso de software, percebe-se uma crescente adoção do conceito de Linha de Produtos de Software (LPS). Esse paradigma possibilita às organizações explorar as similaridades e variabilidades de seus produtos, aumentando a reutilização de artefatos e, como consequência, diminuindo custos e tempo de desenvolvimento. Neste trabalho é apresentada uma LPS voltada ao domínio das aplicações de m-learning, denominada M-SPLearning. A proposição da M-SPLearning envolveu desde o estudo inicial para a obtenção de uma análise de domínio efetiva, até a implementação dos componentes previamente analisados. A LPS concebida teve seus respectivos produtos avaliados experimentalmente no cenário industrial, fornecendo evidências de que sua utilização pode acelerar o time-to-market de produtos de m-learning, com um número reduzido de defeitos. / The popularity of mobile devices in all social classes has motivated the development of mobile educational applications, called m-learning applications. The existing applications, even having many benefits and facilities in relation to teaching and learning, also have problems and challenges, especially regarding the development, reuse and architectural standardization. Particularly, there is an increasing adoption of the concept of Software Product Line (SPL) in researches related to reuse. This paradigm enables organizations to explore the similarities and variabilities of their products, increasing the reuse of artifacts and, consequently, reducing costs and development time. This work presents an SPL focused on the domain of m-learning applications, named M-SPLearning. The development of M-SPLearning has comprised since the initial study for an effective domain analysis until the implementation of the components previously analyzed. Such SPL had its products experimentally evaluated in the industrial scenario, providing evidences that its use can accelerate the time-to-market of m-learning applications, with a reduced number of faults.
104

Uma linha de produto de software para módulos de aprendizagem interativa / A software product line for interactive learning modules

Dalmon, Danilo Leite 06 July 2012 (has links)
Aplicativos educacionais podem promover diversos benefícios a professores e alunos, desde a redução de tarefas repetitivas à realização de atividades impossíveis com o uso de apenas lousa e papel. Módulos de Aprendizagem Interativa (iMA) são uma família de aplicativos educacionais que fornecem atividades interativas integradas a Sistemas de Gerenciamento de Cursos. O desenvolvimento de iMA, similarmente ao de outros sistemas criados em contexto de projetos acadêmicos, enfrenta problemas relacionados a manutenção e evolução de software, que afetam suas contribuições à sociedade. Isso é provocado principalmente pela degradação do código com o tempo e dos métodos ad-hoc utilizados, sem sistematização do processo ou procedimentos explícitos para prevenção desses problemas. Com o objetivo de aprimorar esse processo, esta dissertação apresenta uma Linha de Produto de Software (LPS) criada para o desenvolver iMA. O método usado para criá-la envolveu análise do domínio, formado pelos iMA existentes, a elaboração de um modelo de sistema para definir as responsabilidades das características obrigatórias, variantes e opcionais aos aplicativos, e a implementação de um arcabouço de aplicação. Assim, essa LPS consiste nesse arcabouço e seus manuais de funcionamento interno, utilização e evolução, promovendo reúso de código, arquitetura e processo. A avaliação deste trabalho foi conduzida com uma prova de conceito e um estudo de caso. A prova de conceito descreve o desenvolvimento de um novo iMA, chamado iTangran, apresentando a factibilidade da utilização da LPS para essa tarefa. O estudo de caso investigou com maior profundidade o impacto da LPS sobre a criação da nova versão de um aplicativo existente, chamado iVProg. Os resultados obtidos mostram que o oferecimento de um processo e uma arquitetura que guiam as tarefas do programador de iMA teve grande influência na sua percepção de produtividade e satisfação, além de contribuírem para a qualidade do código criado e sua documentação, fatores essenciais para a prevenção dos problemas de desenvolvimento enfrentados atualmente. / Educational software provide many benefits for teachers and students, from reducing repetitive tasks to offering assignments impossible with the use of only blackboard and paper. Interactive Learning Modules (iLM) are a family of educational systems which offer interactive assignments integrated with Learning Management Systems. The development of iLM, similarly to other software created in context of academic projects, faces issues related to software maintenance and evolution, which hinder their contributions to society. This is mainly caused by code degradation with time and to ad-hoc methods used, without a systematic process and explicit considerations to prevent these problems. With the goal of improving this process, this work presents a Software Product Line (SPL) for the development of iLM. The method used to create this SPL involved an analysis of the domain, which are the existing iLM, the creation of a system model in order to define the responsibilities of mandatory, variant and optional features among systems, and the implementation of an application framework. Therefore, the SPL consists of this framework and its manuals for internal operation, utilization and evolution, providing code, architecture and process reuse. Contributions of this work were evaluated by a proof of concept and a study case. The proof of concept describes the development of a new iLM called iTangran, presenting the possibility of using the SPL for this task. The study case investigated more deeply the SPL impact on the refactoring process of an existing iLM, iVProg. Results show that a guide and an architecture for the tasks undertaken by programmers have a significant influence on the perceived productivity and their satisfaction while working, also contributing to code and documentation quality, which are essential factors to prevent development problems such as those faced nowadays.
105

Engineering Families of Software-Intensive Systems using Features, Goals and Scenarios

Eriksson, Magnus January 2007 (has links)
Over the last decade, software has become an integral part of many products with which it is not traditionally associated (e.g., automobiles, medical equipment, home appliances, etc.). This has led to problems in many organizations, since it has proved difficult to integrate software engineering processes with other engineering processes. To address the increased complexity and to coordinate their engineering efforts, many organizations working in such domains have therefore introduced systems engineering into their business processes. Systems engineering is an interdisciplinary approach to system development. Teamwork is essential in developing complex systems, and systems engineering orchestrates this process throughout the lifespan of a system. The focus of systems engineering is on defining customer needs and required functionality, documenting requirements, synthesizing a design and validating the system. A problem with the traditional techniques of systems engineering is, however, that they provide inadequate support for achieving high levels of reuse between different projects. In this dissertation, methods and tools with the overall purpose of providing an improved reuse infrastructure for systems engineering artifacts and their resulting detailed design artifacts are proposed. The proposed methods and tools are based on the software product-line approach, a reuse strategy which focuses on families of related systems that address particular market segments. Studies have shown that if an empirical study does not report experiences from that which practitioners consider a “real” situation, results are likely to be ignored. Even though case studies cannot achieve the scientific rigor of formal experiments, case studies can provide enough information to decide if a specific technology will benefit a particular organization. To ensure industry-relevant research results, case studies on real development projects were chosen as the main vehicle for performing research. This dissertation reports experiences from four empirical studies which were performed within the Swedish defense industry. The studies indicate that the proposed methods and tools indeed provide an improved reuse infrastructure, compared to the previously used methods and tools.
106

Variability Modeling in the Real

Berger, Thorsten 15 May 2013 (has links) (PDF)
Variability modeling is one of the key disciplines to cope with complex variability in large software product lines. It aims at creating, evolving, and configuring variability models, which describe the common and variable characteristics, also known as features, of products in a product line. Since the introduction of feature models more than twenty years ago, many variability modeling languages and notations have been proposed both in academia and industry, followed by hundreds of publications on variability modeling techniques that have built upon these theoretical foundations. Surprisingly, there are relatively few empirical studies that aim at understanding the use of such languages. What variability modeling concepts are actually used in practice? Do variability models applied in real-world look similar to those published in literature? In what technical and organizational contexts are variability models applicable? We present an empirical study that addresses this research gap. Our goals are i) to verify existing theoretical research, and ii) to explore real-world variability modeling languages and models expressed in them. We study concepts and semantics of variability modeling languages conceived by practitioners, and the usage of these concepts in real, large-scale models. Our aim is to support variability modeling research by providing empirical data about the use of its core modeling concepts, by identifying and characterizing further concepts that have not been as widely addressed, and by providing realistic assumptions about scale, structure, content, and complexity of real-world variability models. We believe that our findings are of relevance to variability modeling researchers and tool designers, for example, those working on interactive product configurators or feature dependency checkers. Our extracted models provide realistic benchmarks that can be used to evaluate new techniques. Recognizing the recent trend in software engineering to open up software platforms to facilitate inter-organizational reuse of software, we extend our empirical discourse to the emerging field of software ecosystems. As natural successors of successful product lines, ecosystems manage huge variability among and within their software assets, thus, represent a highly interesting class of systems to study variability modeling concepts and mechanisms. Our studied systems comprise eleven highly configurable software systems, two ecosystems with closed platforms, and three ecosystems relying on open platforms. Some of our subjects are among the largest successful systems in existence today. Results from a survey on industrial variability modeling complement these subjects. Our overall results provide empirical evidence that the well-researched concepts of feature modeling are used in practice, but also that more advanced concepts are needed. We observe that assumptions about variability models in the literature do not hold. Our study also reveals that variability models work best in centralized variability management scenarios, and that they are fragile and have to be controlled by a small team. We also identify a particular type of dependencies that is increasingly used in open platforms and helps sustain the growth of ecosystems. Interestingly, while enabling distributed variability, these dependencies rely on a centralized and stable vocabulary. Finally, we formulate new hypotheses and research questions that provide direction for future research.
107

Einfluss von Eingabedaten auf nicht-funktionale Eigenschaften in Software-Produktlinien

Lillack, Max 13 December 2012 (has links) (PDF)
Nicht-funktionale Eigenschaften geben Aussagen über Qualitätsaspekte einer Software. Mit einer Software-Produktlinie (SPL) wird eine Menge von verwandten Software-Produkten beschrieben, die auf Basis gemeinsam genutzter Bausteine und Architekturen entwickelt werden, um die Anforderungen unterschiedlicher Kundengruppen zu erfüllen. Hierbei werden gezielt Software-Bestandteile wiederverwendet, um Software effizienter zu entwickeln. In dieser Arbeit wird der Einfluss von Eingabedaten auf die nicht-funktionalen Eigenschaften von SPL untersucht. Es wird auf Basis von Messungen ausgewählter nicht-funktionaler Eigenschaften einzelner Software-Produkte ein Vorhersagemodell für beliebige Software-Produkte der SPL erstellt. Das Vorhersagemodell kann genutzt werden, um den Konfigurationsprozess zu unterstützen. Das Verfahren wird anhand einer SPL von verlustfreien Kompressionsalgorithmen evaluiert. Die Berücksichtigung von Eingabedaten kann die Vorhersage von nicht-funktionalen Eigenschaften einer SPL gegenüber einfacheren Vorhersagemodellen ohne die Berücksichtigung von Eingabedaten signifikant verbessern.
108

Feature Oriented Domain Specific Language For Dependency Injection In Dynamic Software Product Lines

Dayibas, Orcun 01 September 2009 (has links) (PDF)
Base commonality of the Software Product Line (SPL) Engineering processes is to analyze commonality and variability of the product family though, SPLE defines many various processes in different abstraction levels. In this thesis, a new approach to configure (according to requirements) components as building blocks of the architecture is proposed. The main objective of this approach is to support domain design and application design processes in SPL context. Configuring the products is made into a semi-automatic operation by defining a Domain Specific Language (DSL) which is built on top of domain and feature-component binding model notions. In order to accomplish this goal, dependencies of the components are extracted from the software by using the dependency injection method and these dependencies are made definable in CASE tools which are developed in this work.
109

A Test Oriented Service And Object Model For Software Product Lines

Parlakol, Nazif Bulent 01 May 2010 (has links) (PDF)
In this thesis, a new modeling technique is proposed for minimizing regression testing effort in software product lines. The &ldquo / Product Flow Model&rdquo / is used for the common representation of products in application engineering and the &ldquo / Domain Service and Object Model&rdquo / represents the variant based relations between products and core assets. This new approach provides a solution for avoiding unnecessary work load of regression testing using the principles of sub-service decomposition and variant based product/sub-service traceability matrices. The proposed model is adapted to a sample product line targeting the banking domain, called Loyalty and Campaign Management System, where loyalty campaigns for credit cards are the products derived from core assets. Reduced regression test scope after the realization of new requirements is demonstrated through a case study. Finally, efficiency improvement in terms of time and effort in the test process with the adaptation of the proposed model is discussed.
110

Non-functional Variability Management By Complementary Quality Modeling In A Software Product Line

Gurses, Ozgur 01 September 2010 (has links) (PDF)
Software product lines provide the opportunity to improve productivity, quality and time-to-market of software-based systems by means of systematic reuse. So as to accomplish systematic software reuse, elicitation of commonality knowledge is to be upheld by the analysis and management of variability knowledge inherent in domain requirements. Considerable effort is devoted to the management of functional variability, often neglecting the impact of quality concerns originating from non-functional requirements. In this thesis, a hybrid approach concentrating on the modeling of quantitative as well as qualitative concerns on quality has been proposed. This approach basically aims to support the domain design process by modeling non-functional variability. It further aims to support application design process by providing trade-off selection ability among quality concerns to control functional features that belong to the same domain. This approach is implemented and evaluated on an example domain to reveal its benefits on non-functional variability.

Page generated in 0.0315 seconds