• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 468
  • 293
  • 239
  • 42
  • 32
  • 28
  • 19
  • 19
  • 18
  • 17
  • 11
  • 10
  • 10
  • 10
  • 9
  • Tagged with
  • 1322
  • 1322
  • 159
  • 151
  • 130
  • 102
  • 99
  • 94
  • 93
  • 90
  • 89
  • 89
  • 89
  • 88
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
701

The characterization of SiO2-PEG hybrid materials prepared with sol-gel method and their applications to alcohol purification

Wu, Cheng-Hsien 03 August 2012 (has links)
Abstract This thesis conducts a comprehensive investigation of the of the physical chemistry related to the TEOS-based porous materials prepared by so-gel approach and develops the fast qualification technology for the hydrolysis and condensation reaction of sol-gel process. The porous materials were prepared by introducing a polymer polyethylene glycol (PEG) into sol-gel after different aging times and with different drying and annealing processes. The effects of pH and addition of PEG on sol-gel derived SiO2 powders for purification of ethanol are studied. The methods and results of this work provide valuable reference for the development of other functional materials such as low k dielectric materials. In the first part, the long-term behavior of the hydrolysis and condensation reaction of the tetraethoxysilane (TEOS) pre-solution at different pH values with and without addition of polyethyleneglycol (PEG) for various aging times was characterized by liquid 1H, 13C, and 29Si NMR spectroscopy.The experimental results demonstrate that alcohol was generated in the TEOS pre-solutions with and without addition of PEG at pH 3 and pH 9 after aging, implying the occurrence of hydrolysis and condensation. The rate of hydrolysis and condensation for the TEOS pre-solution at pH 3 was found to follow the trend of the pre-solution with PEG 2000 > pre-solution with PEG 200 > pre-solution without PEG. However, after adding PEG, the oxygen atom of the deprotonated silanol group (siloxy) of the hydrolyzed TEOS pre-solution at pH3 acted as a reaction center. The result indicates that the oxygen atom is more susceptible to electrophilic attack, resulting in an increased reaction rate. Consequently, the rate of hydrolysis and condensation for of the TEOS pre-solution at pH 9 follows a different order: pre-solution with PEG 200 > pre-solution without PEG > presolution with PEG 2000. The slowest reaction rate of the TEOS pre-solution when adding PEG 2000 is related to the tangled chains of PEG 2000 which sterically reduces the hydrolysis and condensation reaction. This work shows that the correlation between the pH and aging time on hydrolysis and condensation reaction of the TEOS pre-solution can be effectively monitored by liquid 1H NMR spectroscopy, supported by 13C and 29Si liquid NMR spectra. The data obtained should assist optimizing the pH, polymer type/size/concentration and the aging time in the preparation of polymer modified TEOS sols In the second part, SiO2 powders were prepared by the sol-gel in combination with oven-drying method before and after annealing.The experimental result demonstrates the rate of hydrolysis and condensation occurs at a fast rate in TEOS with and without adding PEG at pH3 than in any other pH levels. Because free space can lead to the vaporization of H2O, the ionization of ammonia decreases (i.e., reduction the amount of hydroxide ion), which arises from the rate of hydrolysis and condensation decreases when TEOS at pH9. After attaching PEG, the oxygen atom of the deprotonated silanol group (siloxy) for of the hydrolyzed TEOS pre-solution at pH 3 acted as a reaction center. The result indicates the oxygen atom is more susceptible to electrophilic attack, resulting in an increased reaction rate. Thus, a maximum in the powder yield is reached for TEOS pre-solution with and without adding PEG at pH 3. The SiO2 powder with adding PEG of higher molecular weight presents higher adsorption capacities, pertaining to a greater amount of hydrophilic hydroxyl groups of PEG with higher molecular weight. After annealing, the surface area of SiO2 powder prepared from the TEOS pre-solutions increases as compared with powder without adding PEG and enhances the adsorption of water. A potential absorbent SiO2 powders for producing purified ethanol suitable for fuel and industrial use, can be fabricated by using sol-gel route by careful selection of pH and PEG molecular weight. In addition, during the preparation and characterization of these materials, some interesting phenomena were observed, which are academically valuable. For instance, some samples show very narrow 1H MAS spectra and yet has high 1H-29Si CPMAS sensitivety. This phenomenon suggests us that CPMAS sensitivety may be improved by a new route, i.e., by properly preparing the sample so that CP efficiency is enhanced.
702

Design and fabrication of new 3D energy harvester with nano-ZnO rods

Li, Cheng-chi 21 August 2012 (has links)
This study presents a new way for new 3D energy harvesting energy with vertically aligned nanorods arrays. ZnO nanoparticles array on Au/Cr/Si substrate are directly patterned by electrospray. First, gel solutions with zinc acetate, monoethanolamine and 2-methoxyethanol as the precursor by sol-gel technology were formulated. Then, the solutions were stirred to become clear and homogeneous liquid. Second, the precursor solutions were prepared by electrospray, where a Taylor cone was formed to produce ZnO nanoparticles. Then the ZnO nanoparticles were annealed as seed layers for nanorods. By varying the property of the ZnO solution, needle with collector distance, applied voltage, annealing temperature and molar ratio were discussed. After annealing, the orientation of the ZnO nanorods depend on the crystalline orientation of ZnO nanoparticles. The ZnO nanorods were obtained at a temperature of 90 ¢XC by aqueous solution method. The experimental parameters of lengths, diameters, and pH level of the reaction medium of the Zno nanorod were observed and controlled. The physical structures of ZnO were characterized by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The results show that the ZnO nanoparticles become more intensity with increasing in annealing temperature. The SEM analysis reveals that the ZnO nanorods have diameters about 100-400 nm and length about 200-1200 nm. Finally, Pt electrode atop as Schottky contacts were packed to fabricate nanogenerator with ZnO nanorods. Then the nanogenerator was driven by ultrasonic wave vibration. The wave drives the electrode up and down to vibrate the nanorods, and its voltage and current were also characterized. The measurement results show the maximum power is 0.004х10-8 W during the operation frequency of 42 kHz.
703

The Study of LiTaO3 Pyroelectric Thin Film IR Detectors Prepared by the Sol-Gel Process with Various Annealing Treatments

Yu-Huang, Yeh 17 July 2004 (has links)
The lithium tantalite [LiTaO3, abbreviated to LT] thin films were deposited on Pt/Ti/SiO2/Si substrates by spin coating with sol-gel technology and various rapid thermal processing in this thesis. By changing the annealed layers and heating temperature(500~800¢J), the effects of various thermal treatments on the thin films growth and the related properties are studied. Besides, the dynamic response of pyroelectric IR detector using LiTaO3 films was studied. In addition, the detector with back side etching was achieved by the anisotropic wet etching of back silicon substrate. The comparisons of detectors with and without backside etching were also investigated. Experimental results reveal that the annealed layers will influence strongly on grain size, dielectricity, ferroelectricity and pyroelectricity of LT thin films. With the increase of the annealed layers, the grain size of LT thin film increases slightly, and highly c-axis orientated LT films can be obtained for the twelve annealed layers. From 4 to 12 annealed layers, the relative dielectric constant of LT thin film increases from 35 up to 65, the dielectric loss (tand) decreases from 0.00637 to 0.00324, the coercive field (Ec) decreases from 84.79KV/cm to 46.23KV/cm, the remnant polarization (Pr) increases from 2.54 mC/cm2 to 7.36 mC/cm2, and the pyroelctric coefficient (g) increases from 2.18´10-8 C/cm2K up to 5.71´10-8 C/cm2K. In addition, the results also show that the LT thin film possesses the largest figures of merit Fv (3.02¡Ñ10-10 Ccm/J) and Fm (4.08¡Ñ10-8 Ccm/J) at heating temperature of 700¢J with twelve annealed layers. The voltage responsivities (Rv) measured at 70 Hz exists a largest value of 8398 V/W with twelve annealed layers. The specific detectivity (D*) measured at 200 Hz has the maximum value of 1.1¡Ñ108 cmHz1/2/W with twelve annealed layers. The results show that LT12 pyroelectric thin film detector exists both the maximums of voltage responsivity and specific detecivity. Therefore, optimizing the conditions of this study, LT12 thin film will be the most suitable for IR detector application. Finally, the voltage responsivities (Rv) of LT thin film increases from 8398 V/W to 9537 V/W, and the specific detectivity (D*) increases from 1.1¡Ñ108 cmHz1/2/W to 2.67¡Ñ108 cmHz1/2/W after backside etching. The results show that the detectivity can be improved after backside etching.
704

The Study of Pyroelectric Infrared Detectors Prepared by a Sol-Gel Technology

Kao, Ming-Cheng 30 July 2004 (has links)
In this thesis, the lithium tantalite [LiTaO3, abbreviated to LT] thin films were deposited on Pt/Ti/SiO2/Si substrates by spin coating with sol-gel processing and rapid thermal processing. 1,3 propanediol was used as solvent to minimize the number of cycles of spin coating and drying processes to obtain the desired thickness of thin film. By changing the heating rate (600~3000¢J/min) and the heating temperature (500~800¢J), the effects of various processing parameters on the thin films growth are studied. In addition, the thermal isolation of detecting elements was achieved by the anisotropic wet etching of back silicon substrate. In order to reduce the thermal mass and thermal time constant of detector, the sensing element was built-up on a thin membrane. By changing the membrane thickness (20~350 £gm), the effects of various membrane thickness on the response of pyroelectric IR detector devices are studied also. Experimental results reveal that the heating rate will influence strongly on grain size, dielectricity, ferroelectricity and pyroelectricity of LT thin films. With the increase of heating rate, the grain size of LT thin film decreases slightly, and the c-axis orientation is enhanced. The relative dielectric constant (£`r ) of LT thin film increases from 28 up to 45.6, the dielectric loss (tan
705

Study on the Ablation Materials of Modified Polyurethane/Polysiloxane

Yu, Feng-Er 17 August 2004 (has links)
Hydroxyl terminated polybutadiene (HTPB) based polyurethanes (PUs) are low modulus materials and degrade easily at low temperature. Polycarbodiimide (PCDI) and polysiloxane (PSi) are reactive-type fillers when formed by carbodimidzation and sol-gel process, respectively. During the combustion, PCDI and PSi give off non-toxic, non-corrosive volatile gases, and finally form carbonaceous and siliceous chars. In this study, modified PUs were prepared by incorporating PCDI or PSi into PUs to give high carbon, nitrogen and silicon materials. These modified PUs are kinds of organic-inorganic hybrids with higher modulus and higher thermal stability than HTPB-based PUs. In addition, new silicone based insulation materials were prepared by mixing two silicone rubber materials LSR-2670 and RTV-627 from GE Silicones, in order to improve the heat insulation and to reduce the ablation rate. These inhibitors can keep the rocket motor from the high temperature ablation for a long time, especially castable silicone based heat insulations for the case of the ramjet engines. The mechanical properties at room temperature and the thermal stability of these modified PUs and silicone rubbers were investigated using a tensile tester and a thermogravimetric analyzer (TGA). ATR/FTIR (Attenuated total reflectance / Fourier transform infrared) technique is applied to monitor the synthesis process of PCDI and to examine the change of surface chemistry of insulator before and after thermal degradation via TGA. TGA coupled with FTIR (TGA/FTIR) was used to analyze the kinetics and the mechanism of thermal degradation under nitrogen and/or air. The Friedman and Kissinger methods of analysis were used for calculating the activation energy of degradation from dynamic TGA. The modified PUs (HIPTD-40%Psi¤ÎHIPTD-30%PMPS-PSi) with average activation energy of 88 and 112 kcal/mole (0.5¡Õ£\¡Õ0.9, under N2) and the modified silicone rubber (LR-5%HTB) with activation energy of 46.2~67.0 kcal/mole (0.1¡Õ£\¡Õ0.9, under N2) and 34.0~59.1 kcal/mole (0.1¡Õ£\¡Õ0.9, under air).The maximum degradation temperature (Tmax) and char yield (CY) of thermal degradation were estimated from a series of experiments with heating rates of 1, 3, 5, 10, 20, 30, 40 and 50 ¢J/min, under nitrogen or air. It is apparent that the maximum degradation temperature is dependent on heating rate. By assuming the heating rate for the insulator used in a rocket operating environment is about 5000¢J/min, Tmax calculated for the modified PUs (HIPTD-40%PSi and HIPTD-30%PMPS-PSi under N2) are found as 538 and 562¢J and for the modified silicone rubber (LR-5%HTB under N2 and air) are found as 576 and 562¢J, respectively. CY calculated for the modified silicone rubber (LR-5%HTB under N2 and air) is found as 71.5% and 66.2%. The morphology of modified PUs and silicone rubbers before and after thermal degradation via TGA was observed by optical and scanning electron microscope (SEM).
706

Photoreduction of Carbon Dioxide in a Batch Reactor Using Nanosized Titanium Dioxide Photocatalysts Prepared by a Sol-gel Method

Hung, Yu-Li 20 August 2004 (has links)
ABSTRACT The increase of carbon dioxide (CO2) concentration in the atmosphere has become a severe environmental problem, since it could cause global warming due to greenhouse effects. Thus, the reduction of CO2 emission to tackle the greenhouse effect has become one of the most important tasks for sustainable development. The outcomes of this study would be valuable to evaluate the feasibility of applying photocatalytic reduction process to remove CO2 from the atmosphere as well as the flue gas. This study investigated the photocatalytic reduction of CO2 in a self-designed batch UV/TiO2 photocatalytic reactor. The photocatalysts tested included commercial TiO2 (Degussa P-25) and synthesized TiO2 via modified sol-gel process (i.e. NO3-/TiO2 and SO42-/TiO2). Stainless steel supports coated with TiO2 were packed in the batch reactor. The initial concentrations of CO2 ranged from 0.5% to 7.5%. The reductants investigated included hydrogen (H2), water vapor (H2O), and hydrogen with water vapor (H2+H2O). The incident UV light with wavelength of 365 nm was irradiated by a 15-watt low-pressure mercury lamp. The photocatalytic reaction was conducted continuously for approximately 48 hours. Reactants and products were analyzed quantitatively by a gas chromatography with a flame ionization detector followed by a methaneizer (GC/FID-Methaneizer). Experimental results indicated that stainless steel coated with TiO2 had better photoreduction efficiency than that of quartz glass. The optimal operating conditions of CO2 photoreduction were observed by using H2 over SO42-/TiO2, which could produce major products of CO and CH4 and minor products of C2H4 and C2H6. Sulfuric acid used as a stabilizer in the sol-gel process could produce TiO2 of high specific surface area. Results obtained from the operating parameter tests showed that the photoreduction rate increased with the initial concentration of carbon dioxide and resulted in more product accumulation. Higher photoreduction efficiency of carbon dioxide was observed by using the hydrogen (H2) than water vapor (H2O). The photoreduction rate of carbon dioxide increased with reaction temperature, which promoted the formation of products. In addition, proper water vapor (ie. relative humidity of water vapor =25%~75%) could increase the photoreduction efficiency. However, the photoreduction efficiency decreased white it was close to (ie. relative humidity of water vapor =75%~100%). Concurred with previous researches, the reaction rate of major products over SO42-/TiO2 were higher than previous investigations of CO2 photoreduction. This study proposed the reaction pathway using hydrogen and/or water vapor as the reductants. Moreover, a one-site Langmiur-Hinshewood kinetic model (L-H model) was successfully applied to simulate the reaction rate of CO2 during the photoreduction reaction process.
707

A Study on Photocatalytic Treatment of Acetic Acid Wastewater by Nanostructured Film of TiO2

Tsai, Ming-hsiu 07 September 2004 (has links)
In the work, photocatalytical treatment of acetic acid wastewater by nanostructured film of TiO2 under ultra-violet ¡]UV¡^ light illumination was studied. Nanosized TiO2 suspension was prepared by the sol-gel process. Then it was dip-coated on indium tin-oxide¡]ITO¡^glass, which could be used as the anode if applicable. Effects the UV light intensity, UV light wavelength, reactive area of TiO2 film, solution pH, and applied bias voltage on photocatalysis efficiency of acetic acid in term of COD removal were studied in this work. Experimental results have shown that a pseudo first-order kinetics was obeyed in all tests. In this study UV light of 312nm outperformed that of 365nm ¡]15.3¢H vs. 11.0¢H¡^. UV light intensity of 20W was also found to be superior to 10W with COD removal of 11.0¢H against 6.7¢H. COD removal at pH¡×3.18 was about 3.6 times greater as compared with that of at pH=9.98. When the reactive area of TiO2 film was increased to three times, the COD removal was almost doubled. An applied external voltage was found to enhance the removal of COD. When an external voltage of 15V was applied, the COD removal was increased to 84.6¢H. It is ascribed to an external voltage would prevent or lower the extent of electron-hole recombination. In this work, the pseudo first-order reaction rate equation K¡¬=1.7679(COD)-0.7547 was obtained for various concentrations of acetic acid tested.
708

Immobilization Studies Utilizing Solid Supports For The Determination Of Fructose By Dansylaminophenylboronic Acid And Chromate By Diphenylcarbazide

Bulut, Mukadder 01 July 2006 (has links) (PDF)
Immobilization of fluorescent chemosensors and chromogenic reagents on solid supports for developing optical sensors result in improved analytical performance characteristics such as continuous read-out, increased sensitivity, lower reagent consumption and possibility of using the sensor in solvents where the free molecule displays low solubility. The aim of this study is to immobilize dansylaminophenyl boronic acid (DAPB acid) and diphenylcarbazide (DPC) into various solid supports for the determination of fructose and hexavalent chromium, respectively. DAPB acid reacts with diol containing molecules to produce electron transfer resulting fluorescence quenching. Whereas DPC reacts specifically with chromate to produce a magenta colored complex having absorption maximum at 540 nm. Utilizing sol-gel technology, inorganic polymer matrices which enabled to observe fluorescence and absorbance signal in VIS region has been constructed. Also methylmethacrylate (MMA) and methacrylic acid (MAA), which are known to give transparent organic co-polymers, are chosen as monomers in the synthesis of organic copolymer. Hydrogels such as polyvinyl alcohol and Ca-alginate gel have been utilized for their good optical characteristics in the working range. Several considerations in the construction of host matrix were taken into account, such as the porosity of the polymers, functionalization of the matrix and use of additives for increasing the affinity of the medium toward the dopant molecule and swelling properties of organic polymers. The performances of the immobilizations were evaluated in terms of the transmittance and leaching properties of the host matrix, optical properties of dopant and optical response characteristic of the dopant for the analyte. The sensor applications of the immobilized probe molecule DPC were investigated. Studies regarding the enhancement of the performance of the flow injection analysis method for fructose determination, previously carried out in our laboratory, based on the fluorescence quenching of DAPB acid probe in solution were stated.
709

Production Of Alumina Borosilicate Ceramic Nanofibers By Using Electrospinning Technique And Its Characterization

Tanriverdi, Senem 01 July 2006 (has links) (PDF)
Today, ceramic, polymer, and composite nanofibers are among the most charming materials for nanotechnology. Because of their small characteristic dimension, high surface area, and microstructural features, they provide unique mechanical, optical, electronic, magnetic, and chemical properties for an extensive variety of materials applications. Electrospinning provides an effective way of the nanofiber production in a nanometer scale. This technique utilizes a high voltage DC to create a strong electric field and a certain charge density in a viscous solution contained in a pipette. As a result, fibers with diameters ranging from the micrometer to nanometer are formed from this charged solution. This study deals with, the fabrication of alumina borosilicate ceramic nanofibers using electrospinning technique. Alumina borosilicates contain important components having intriguing characteristics for many applications and have been widely studied with different compositions. In this study, alumina borosilicate/PVA solution was prepared using the conventional sol-gel method. Polyvinyl alcohol (PVA) was added into this solution to increase the viscosity for electrospinning. After the alumina borosilicate/PVA solution was electrospun into fibers, high temperature sintering was carried to obtain ceramic alumina borosilicate fibers. The products were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform-infrared spectroscopy (FT-IR), and thermogravimetric/differential thermal analysis (TG-DTA) techniques.
710

Characterization Of Maghemite Thin Films Prepared By Sol-gel Processing

Karakuscu, Aylin 01 October 2006 (has links) (PDF)
In this study, maghemite (&amp / #947 / -Fe2O3) thin films were prepared by chemical solution deposition on glass and quartz substrates. The solution was prepared by using 0.3 M iron (III) nitrate [Fe(NO3)3 - 9H2O] as precursor and dissolved in a mixture of 2-methoxyethanol and acetylacetone in a molar ratio of 20:2, by stirring the solution at RT for 2 hours. Substrates were prepared by either piranha etching method or ultrasonic cleaning method. The solution was spin coated on glass and quartz substrates at 1400 and 4000 rpm for 1 minute. The resultant film thickness was found as 65 and 80 nm by SEM. Viscosity of the main solution was found to be approximately as 0.0035 Pa.s by viscosity measurement. TGA/DTA analyses showed that, to produce maghemite thin film, heat treatment should be done between 330 &deg / C and 440 &deg / C. Homogeneous and crack free maghemite thin films were observed by Energy Dispersive Spectrometry (EDS) and Scanning Electron Microscope (SEM) methods. TEM studies verified maghemite thin film formation by using electron diffraction and SAED (selected area electron diffraction) method. Thin film characteristics were evaluated by changing the experimental parameters which are annealing temperature, annealing time and thickness of the films using XRD (x-ray diffraction) method. Optical band gap of maghemite thin films were found as approximately 2.64 eV by UV-VIS Spectrophotometer. Magnetic properties of maghemite thin films were also examined by VSM (vibrating sample magnetometer).

Page generated in 0.0238 seconds