• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 26
  • 22
  • 12
  • 9
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 448
  • 448
  • 428
  • 297
  • 164
  • 94
  • 75
  • 61
  • 54
  • 43
  • 41
  • 38
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Investigations of gas/electrode interactions in solid oxide fuel cells using vibrational spectroscopy

Abernathy, Harry Wilson, III 01 April 2008 (has links)
The goal of current solid oxide fuel cell (SOFC) research is to design electrode materials and other system components that permit the fuel cell to be operated in the 400-700ºC range. Cell performance in this lower temperature range is limited by the oxygen reduction process at the SOFC cathode and by multiple contamination processes. The work presented demonstrates that Raman spectroscopy, a form of vibrational spectroscopy, can provide structural and compositional information complementary to that from traditional characterization methods. Initial experiments into the oxygen reduction mechanism on SOFC cathodes were unable to detect surface oxygen species on selected perovksite-based SOFC cathode materials. However, the Raman signal from the cathode surface was able to be enhanced by depositing silver or gold nanoparticles on the cathode, creating the so-called surface-enhanced Raman scattering (SERS) effect. The Raman sample chamber was also used to study two possible electrode contamination processes. First, the deposition of carbon on nickel and copper anodes was observed when exposed to different hydrocarbon fuel gases. Second, the poisoning of an SOFC cathode by chromium-containing vapor (usually generated by stainless steel SOFC system components) was monitored. Overall, Raman spectroscopy was shown to be useful in many areas crucial to the development of practical, cost-effective SOFCs. The techniques developed here could also be applied to other high temperature electrochemical and catalytic systems.
202

Investigation of deposition parameters in ultrasonic spray pyrolysis for fabrication of solid oxide fuel cell cathode

Amani Hamedani, Hoda 19 November 2008 (has links)
Solid oxide fuel cell (SOFC) research is currently underway to improve performance, cost and durability by lowering the operating temperature to ~600°C. One approach is to design fabrication processes capable of tailoring desirable cathode microstructures to enhance mass and charge transfer properties through the porous medium. The aim of this study is to develop a cost effective fabrication technique for deposition of novel microstructures, specifically, functionally graded thin films of LSM oxide with porosity graded structure for use as IT- SOFCs cathode. Spray pyrolysis method was chosen as a low-temperature processing technique for deposition of porous LSM films onto dense YSZ substrates. The effort was directed toward the optimization of the processing conditions for deposition of high quality LSM films with variety of morphologies in the range of dense to porous microstructures. Results of optimization studies on spray parameters revealed that the substrate surface temperature is the most critical parameter influencing the roughness and morphology, porosity, cracking and crystallinity of the film. Physical and chemical properties of deposited thin films such as porosity, morphology, phase crystallinity and compositional homogeneity have shown to be extensively dependent on the deposition temperature as well as solution flow rate and the type of precursor solution among other parameters. The LSM film prepared from organo-metallic precursor and organic solvent showed a homogeneous crack-free microstructure before and after heat treatment as opposed to aqueous solution. Also, increasing the deposition temperature and the solution flow rate, in the specific range of 520-580 ℃ and 0.73-1.58 ml/min, respectively, leads to change the microstructure from a dense to a highly porous film. Taking the advantage of simplicity of spray pyrolysis technique combined with using metal-organic compounds, the conventional ultrasonic spray system was modified to a novel system whereby highly crystalline multi-layered porosity graded LSM cathode with columnar morphology and good electrical conductivity in the range of 500-700 °C was fabricated through a multi-step spray and via applying optimum combination of spray parameters. This achievement for the current graded LSM cathode would allow its use in IT-SOFCs.
203

Investigation of catalytic phenomena for solid oxide fuel cells and tar removal in biomass gasifiers

Kuhn, John N., January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 322-338).
204

Energy production from coal syngas containing H₂S via solid oxide fuel cells utilizing lanthanum strontium vanadate anodes

Cooper, Matthew E. January 2008 (has links)
Thesis (Ph.D.)--Ohio University, August, 2008. / Title from PDF t.p. Includes bibliographical references.
205

Characterization of nickel-substituted hexaaluminate catalysts

Hissam, Jason C. January 2008 (has links)
Thesis (M.S.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains vii, 78 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 74-76).
206

Solid oxide steam electrolysis for high temperature hydrogen production /

Eccleston, Kelcey Lynne. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, April 2007.
207

Vibrational and mechanical properties of 10 mol % Sc₂O₃-1 mol % CeO₂- ZrO₂ electrolyte ceramics for solid oxide fuel cells

Lukich, Svetlana. January 2009 (has links)
Thesis (M.S.M.S.E.)--University of Central Florida, 2009. / Adviser: Nina Orlovskaya. Includes bibliographical references (p. 87-93).
208

In-situ electrical terminal characterization of fuel cell stacks

Seger, Eric Matthew. January 1900 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Steven R. Shaw. Includes bibliographical references (leaves 55-56).
209

Development of SOFC anodes resistant to sulfur poisoning and carbon deposition

Choi, Song Ho. January 2007 (has links)
Thesis (Ph.D)--Materials Science and Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Meilin Liu; Committee Member: Arun Gokhale; Committee Member: Christoper Summers; Committee Member: Preet Singh; Committee Member: Tom Fuller. Part of the SMARTech Electronic Thesis and Dissertation Collection.
210

Modeling of solid oxide fuel cell/gas turbine hybrid systems

Srivastava, Nischal. Ordonez, Juan C. January 2006 (has links)
Thesis (M.S.)--Florida State University, 2006. / Advisor: Juan C. Ordonez, Florida State University, College of Engineering, Dept. of Mechanical Engineering. Title and description from dissertation home page (viewed Sept. 15, 2006). Document formatted into pages; contains viii, 78 pages. Includes bibliographical references.

Page generated in 0.0151 seconds