• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 26
  • 22
  • 12
  • 9
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 448
  • 448
  • 428
  • 297
  • 164
  • 94
  • 75
  • 61
  • 54
  • 43
  • 41
  • 38
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

The Development of Ni1-x-yCuxMgyO-SDC Anode for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)

Monrudee, Phongaksorn January 2010 (has links)
Solid oxide fuel cells (SOFCs) conventionally operate between 800 and 1000°C. The barriers for full-scale commercialization of SOFCs are the high cost and relatively poor long-term stability due to the high temperatures used in current state-of-the-art SOFCs. One solution is to decrease the operating temperature, e.g. to 550-750°C but this requires developing new electrolytes and electrode materials. Also, to increase efficiency and practicality, the anode should be able to internally reform hydrocarbon fuels especially methane because it is the most common hydrocarbon in natural gas. The overall goal of this research is to develop a coke-tolerant Ni1-x-yCuxMgyO-SDC anode for methane fuelled IT-SOFCs. The Ni-Cu-Mg-O-SDC anode has been chosen based on the premises that doped-ceria is suitable for intermediate operating temperatures (550-800°C), Ni is known as an active metal and good electronic conductor, Cu increases resistance to coking, MgO helps prevent agglomeration of Ni during reduction, and finally SDC improves oxide ion transport to the cell at this intermediate temperature range. In this work, these materials were characterized in three primary ways: material physical and chemical properties, methane steam reforming activity and electrochemical performance. Two different methods have been used to add Cu to Ni1-yMgyO: a one-step co-precipitation method and a two-step co-precipitation/impregnation method. For the first method, Ni1-x-yCuxMgyO was synthesized via co-precipitation of Ni, Mg and Cu. In the two-step method, Ni0.9Mg0.1O was first prepared by co-precipitation, followed by addition of copper to Ni0.9Mg0.1O by impregnation. However, co-precipitation of all metal in one step limits the sintering temperature of the anode in the cell fabrication due to the low boiling point of CuO. Therefore, co-precipitation of Cu is not a practical method and only Cu impregnation should be considered for practical SOFC applications. It was found that the addition of Mg (Ni0.9Mg0.1O) lowers the reducibility of NiO. Addition of Cu to Ni0.9Mg0.1O up to 5% shows similar reducibility as Ni0.9Mg0.1O. The reducibility of Ni1-x-yCuxMgyO becomes lower when the Cu content is increased to 10%. Nonetheless, all materials are fully reduced at 750ºC. The XRD patterns of pure NiO, Ni0.9Mg0.1O, and the Cu-containing material when Cu is less than 10 mol% are similar. The lower reducibility of Ni-Mg-O and Ni-Cu-Mg-O compared to NiO indicates that they form a solid solution with NiO as the matrix. Solid oxide fuel cells (SOFCs) conventionally operate between 800 and 1000°C. The barriers for full-scale commercialization of SOFCs are the high cost and relatively poor long-term stability due to the high temperatures used in current state-of-the-art SOFCs. One solution is to decrease the operating temperature, e.g. to 550-750°C but this requires developing new electrolytes and electrode materials. Also, to increase efficiency and practicality, the anode should be able to internally reform hydrocarbon fuels especially methane because it is the most common hydrocarbon in natural gas. The overall goal of this research is to develop a coke-tolerant Ni1-x-yCuxMgyO-SDC anode for methane fuelled IT-SOFCs. The Ni-Cu-Mg-O-SDC anode has been chosen based on the premises that doped-ceria is suitable for intermediate operating temperatures (550-800°C), Ni is known as an active metal and good electronic conductor, Cu increases resistance to coking, MgO helps prevent agglomeration of Ni during reduction, and finally SDC improves oxide ion transport to the cell at this intermediate temperature range. In this work, these materials were characterized in three primary ways: material physical and chemical properties, methane steam reforming activity and electrochemical performance. Two different methods have been used to add Cu to Ni1-yMgyO: a one-step co-precipitation method and a two-step co-precipitation/impregnation method. For the first method, Ni1-x-yCuxMgyO was synthesized via co-precipitation of Ni, Mg and Cu. In the two-step method, Ni0.9Mg0.1O was first prepared by co-precipitation, followed by addition of copper to Ni0.9Mg0.1O by impregnation. However, co-precipitation of all metal in one step limits the sintering temperature of the anode in the cell fabrication due to the low boiling point of CuO. Therefore, co-precipitation of Cu is not a practical method and only Cu impregnation should be considered for practical SOFC applications. It was found that the addition of Mg (Ni0.9Mg0.1O) lowers the reducibility of NiO. Addition of Cu to Ni0.9Mg0.1O up to 5% shows similar reducibility as Ni0.9Mg0.1O. The reducibility of Ni1-x-yCuxMgyO becomes lower when the Cu content is increased to 10%. Nonetheless, all materials are fully reduced at 750ºC. The XRD patterns of pure NiO, Ni0.9Mg0.1O, and the Cu-containing material when Cu is less than 10 mol% are similar. The lower reducibility of Ni-Mg-O and Ni-Cu-Mg-O compared to NiO indicates that they form a solid solution with NiO as the matrix. Addition of Mg also lowers the BET specific surface area from 11.5 m2/g for NiO:SDC to 10.4 m2/g for Ni0.9Mg0.1O. The surface area is further reduced when Cu is added; for example, at 10% Cu, the surface area is 8.2 m2/g. The activity of 50wt% Ni1-x-yCuxMgyO/50wt% SDC samples for methane steam reforming (SMR) and water-gas-shift reaction (WGS) was evaluated in a fully automated catalytic fixed-bed reactor where the exiting gases were analyzed online by a gas chromatograph (GC). The tests were performed at steam-to-carbon ratios (S/C) of 3, 2 and 1, and at temperatures of 750°C and 650°C for twenty hours. Higher methane conversions were obtained at the higher temperature and higher S/C ratio. Higher methane conversion are obtained using NiO:SDC and Ni0.9Mg0.1O:SDC than Ni-Cu-Mg-O. The conversion decreases with increasing Cu content. Over NiO:SDC and Ni0.9Mg0.1O:SDC the methane conversions are the same; for example 85% at 750°C for S/C of 3. At the same conditions, impregnation of 5%Cu and 10%Cu yields lower conversions: 62% and 48%, respectively. The activity for the WGS reaction was determined by mornitoring CO2/(CO+CO2) ratio. As expected because WGS is a moderately exothermic reaction, this ratio decreases when increasing the temperature. However, the CO2/(CO+CO2) ratio increases with higher S/C. The results indicate that adding Mg does not affect the WGS activity of NiO. The WGS activity of Ni0.9Mg0.1O:SDC is higher when Cu is added. The effect of additional Cu is more pronounced at 650ºC. At 750°C, changing the amount of Cu does not change the WGS activity because the WGS reaction rapidly reaches equilibrium at this high temperature. At 750°C for S/C of 1, carbon filaments were found in all samples. At 650ºC, different types of deposited carbon were observed: carbon fibers and thin graphite layers. Spent NiO:SDC had the longest carbon fibers. Addition of Mg significantly reduced the formation of carbon fibers. Impregnating 5% Cu on Ni0.9Mg0.1O:SDC did not change the type of deposited carbon. Monitoring the amount of deposited carbon on Ni0.9Mg0.1O:SDC, 3%Cu and 5%Cu impregnated on Ni0.9Mg0.1O:SDC for S/C of 0 at 750ºC showed that Cu addition deactivated methane cracking causing a reduction in the amount of carbon deposited. Electrochemical performance in the presence of dry and humidified hydrogen was determined at 600, 650, 700 and 750ºC. Electrolyte-supported cells constructed with four different anodes were tested using polarization curve and electrochemical impedance spectra. The four anodes were NiO:SDC, Ni0.9Mg0.1O:SDC, 3%Cu and 5%Cu on Ni0.9Mg0.1O:SDC. Adding Mg improved the maximum power density from 356 mW.cm-2 with NiO:SDC to 369 mW.cm-2 with Ni0.9Mg0.1O:SDC at 750ºC in dry hydrogen. Addition of Cu, on the other hand, lowered the maximum power density to 325 mW.cm-2 with 3%Cu impregnated and to 303 mW.cm-2 with 5% Cu impregnated. The cell with Ni0.9Mg0.1O:SDC was also tested under dry methane. To minimize methane cracking under this extreme condition, a current density of 0.10 A.cm-2 was always drawn when methane was present in the feed. The voltage decreased during the first hour from 0.8 to 0.5 V, then remained stable for 10 hours, and then started to drop again. Many small cracks were observed on the anode after completion of the electrochemical test, but there was no evidence of much carbon being deposited. In addition to dry methane, tests were also carried out, using the same material, with a H2O/CH4 mixture of 1/6 in order to generate a polarization curve at 750°C. Under these conditions, the maximum power density was 226 mW.cm-2. This is lower than the maximum power density obtained with humidified hydrogen, which was 362 mW.cm-2.
172

Thermal Stress Analysis of LCA-based Solid Oxide Fuel Cells

LeMasters, Jason Augustine 12 April 2004 (has links)
This research characterizes the thermal stress resulting from temperature gradients in hybrid solid oxide fuel cells that are processed using a novel oxide powder slurry technology developed at Georgia Tech. The hybrid solid oxide fuel cell is composed of metallic interconnect and ceramic electrolyte constituents with integral mechanical bonds formed during high temperature processing steps. A combined thermo-mechanical analysis approach must be implemented to evaluate a range of designs for power output and structural integrity. As an alternative to costly CFD analysis, approximate finite difference techniques that are more useful in preliminary design are developed to analyze the temperature distributions resulting from a range of fuel cell geometries and materials. The corresponding thermal stresses are then calculated from the temperature fields using ABAQUS. This model analyzes the manufacturing, start-up, and steady state operating conditions of the hybrid solid oxide fuel cell.
173

A Quantitative Determination of Electrode Kinetics using Micropatterned Electrodes

Koep, Erik Kenneth 11 April 2006 (has links)
Interfacial polarization resistances limit the performance of many thin film solid-state devices, especially at low temperatures. To improve performance, a fundamental understanding of the electrode kinetics that govern interfacial reaction rates must be developed. The goal of this work is to determine site-specific reaction mechanisms and the relative significance of various reactions in order to quantify optimum structural parameters within the cathode microstructure. Key parameters include the length of triple phase boundary (TPB), the quantity of exposed electrolyte/electrode surface, and the ratio of electrolyte to electrode material. These parameters, when studied in a specific system, can be incorporated into broader models, which will encompass the specific conductivity of each component to develop an optimized three-dimensional network. The emphasis of this work is the systematic control and manipulation of potential cathodic reaction sites in order to develop an understanding of the relative importance of specific reaction sites. Since the physical dimensions of reaction sites are relatively small, an approach has been developed that utilizes micro-fabrication (similar to that used in integrated-circuit fabrication) to produce small and highly controlled microstructures. Investigations were made into the nature and reactivity of Triple Phase Boundaries (hereafter TPB) through the use of patterned platinum electrodes since only the TPBs are active in these electrodes. After the processing details of micro-fabrication were established for the platinum electrodes, patterned Mixed-Ionic/Electronic Conducting (MIEC) electrodes were fabricated and studied using impedance spectroscopy to determine the contributions from the MIEC surface versus the TPB. Systematically changing the geometry of the MIEC electrodes (thickness and line width) allowed for the determination of the effect of ambipolar transport within the MIEC on the activity of MIEC surfaces versus the TPB. This information is critical to rational design of functionally graded electrodes (with optimal particle size, shape, porosity and conductivity). In addition to experimental studies, representative patterned electrode samples were made available for collaborative studies with surface scientists at other institutions to provide additional techniques (such as Raman Spectroscopy) on the carefully designed and controlled cathode surfaces.
174

An Enhanced Transient Solid Oxide Fuel Cell Performance Model

Ford, James Christopher 20 November 2006 (has links)
In order to facilitate the application of solid oxide fuel cells, in conjunction with reduced research and development costs, there is a need for accurate performance models to aid scientists and engineers in component and process design. To this end, an enhanced transient performance model has been developed. The present thesis enhances transient modeling and simulation via characterization of two important transient phenomena. They are bimodal stimuli (i.e., simultaneous changes in reactant supply and load demand) electrical transients, inclusive of the simulation of electrolysis, and the electrochemical light off phenomenon. One key result of the electrochemical light off simulations was that the realization that electrochemical parameters such as cell potential may be used as dynamic control variables during transitional heating of the cell. Reflective of the state-of-the-art in controls and dynamic simulation development, the modeling efforts are completed in the MATLAB computing environment. There is then a tangible software development that accompanies the modeling and simulation exercises and transient insights resolved.
175

Extension of the master sintering curve for constant heating rate modeling

McCoy, Tammy Michelle 15 January 2008 (has links)
The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into 1/4 inch diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative density of the pellets based on the green density and the theoretical density of each of the compositions. The Master Sintering Curve (MSC) model is then utilized to generate data that can be utilized to predict the final density of the respective powder over a range of heating rates. The Elton Master Sintering Curve Extension (EMSCE) is developed to extend the functionality of the MSC tool. The parameters generated from the original MSC are used in tandem with the solution to a specific closed integral (discussed in document) over a set range of temperatures. The EMSCE is used to generate a set of sintering curves having both constant heating rate and isothermal hold portions. The EMSCE extends the usefulness of the MSC by allowing this generation of a complete sintering schedule rather than just being able to predict the final relative density of a given material. The EMSCE is verified by generating a set of curves having both constant heating rate and an isothermal hold for the heat-treatment. The modeled curves are verified experimentally and a comparison of the model and experimental results are given for a selected composition. Porosity within the final product can hinder the product from sintering to full density. It is shown that some of the compositions studied did not sinter to full density because of the presence of large porosity that could not be eliminated in a reasonable amount of time. A statistical analysis of the volume fraction of porosity is completed to show the significance of the presence in the final product. The reason this is relevant to the MSC is that the model does not take into account the presence of porosity and assumes that the samples sinter to full density. When this does not happen, the model actually under-predicts the final density of the material.
176

A study of electrochemical properties of Ni-CGO composite for SOFC anode

Chen, Jing-Chiang 29 June 2006 (has links)
For the past few decades, Ni-YSZ (yttria-stabilized zirconia) has been the dominate anode material of high temperature (>1000¢J) solid oxide fuel cells (SOFCs). However, the conductivity of Ni/YSZ is not enough when the operation temperature is in the intermediate rage of 500~700¢J. Instead, Ni/CGO is a good candidate as the anode material of intermediate temperature SOFCs (IT-SOFC), due to its enhanced conductivity. This work was aimed at the preparation of Ni/CGO composite anodes using the electrostatic assisted ultrasonic spray pyrolysis (EAUSP) method. By properly adjusting the deposition parameters, highly porous composite films with desired phases and microstructure rendering low electrode impedances were obtained. The results indicated that deposition temperature and the applied voltage dictated the evolution of film morphology and hence the interface impedance between the electrode and the electrolyte. Therefore, the optimum deposition parameters for the best microstructure and hence minimum interface impedance were 12 kV for the applied voltage, 6 : 4 for the Ni-CGO mole ratio, 450¢J for the deposition temperature. The microstructure thus obtained possessed a cauliflower-like structure with high porosity. The resultant interface impedance at 550¢J was 0.09 Ωcm2, lower than that obtained from the conventional anode preparation routes of dip-casting (0.14 Ωcm2) or mechanical mixing (0.12 Ωcm2).
177

First And Second Law Analyses Of A Biomass Fulled Solid Oxide Fuel Ceel-micro Turbine Hybrid System

Arabaci, Selin 01 November 2008 (has links) (PDF)
Fuel cells are direct energy conversion devices to generate electricity. They have the lowest emission level of all forms of electricity generation. Fuel cells require no combustion of the fuel. The thermal energy gained from fuel cells may be utilized in micro turbines (gas turbines). In this work, first and second law analyses are performed on a hybrid system consisting of a solid oxide fuel cell (SOFC) combined with a micro turbine to be able to find an optimum point of pressure and corresponding mass ratio to gain maximum work output. Also another system with same equipments only without a gas turbine is investigated to see the effects of gas turbine. The analyses are performed utilizing a code written in MATLAB for each of the equipments. Fuel used is biomass with a certain concentration. To be able to use biomass in a fuel cell-micro turbine hybrid cycle, it is gasified and converted into a certain calorific value gas, with the use of gasifiers. In this study fluidized bed gasifier is utilized since it has the advantage of good mixing and high heat transfer leading to a uniform bed condition. Desulphuration and gas filter units will be implemented in order to clean the producer gas before being used in hybrid system. For a certain percentage of the fuel that may pass through the fuel cell without being used, a combustor is utilized. Optimum point mass and pressure ratios for system are MR = 0.6411 and Pr = 8. Gas turbine supplies more power and higher efficiency to the system. There are different choices for fuel selection in hybrid systems. The reason why biomass is examined among these is that it decreases the depletion of energy carriers and reduces the environmental impact.
178

Novel heterogeneous catalyst anodes for high-performance natural gas-fueled solid oxide fuel cells

Yoon, Daeil 16 January 2015 (has links)
Solid oxide fuel cells (SOFCs) are electrochemical energy conversion devices that directly transform the chemical energy of fuel into electrical energy. They generate electricity far more efficiently and with fewer emissions per megawatt-hour compared to any combustion-based power generation system. More remarkably, SOFCs can directly use hydrocarbon fuels without requiring external fuel reforming, employing low-cost Ni catalyst instead of noble-metal catalysts used for low-temperature fuel cells. However, the conventional SOFCs using Ni-based anodes fed with carbon-containing fuels have one pitfall; the carbon produced by hydrocarbon cracking is deposited on the Ni surface, thereby precluding the surface of the Ni-based anodes from being available for further fuel oxidation and consequently impeding SOFC operation. This dissertation focuses on overcoming this critical drawback to allow for the simultaneous use of Ni-based anodes and hydrocarbon fuels. Further work focuses on improving SOFC performance to provide the highest efficiencies possible. To boost the power densities of SOFCs, a novel, facile approach to modify the surface structure of anode powders and thereby enlarge the three-phase boundary (TPB) regions of anodes is presented. One such powder preparation method based on the electric charge variation of oxides depending upon the pH of the solution results in significantly extended TPB regions and thus a remarkable increase in power densities of SOFCs. Another method involves the formation of Ce₁₋[subscript x]Gd₁₋[subscript y]Ni[subscript x+y]VO₄₋[subscript delta] at the phase boundaries between NiO and Ce₀.₈Gd₀.₂O₁.₉ (GDC) by V⁵⁺-incorporation onto NiO surface; this method improves the microstructure of Ni-GDC-based anodes and considerably lowers GDC electrolyte sintering temperature, thereby enhancing the SOFC performance. With these high performance anodes, natural gas-fueled SOFCs are studied through two strategies to alleviate coking: incorporation of catalytic materials onto the Ni surface and the introduction of catalytic functional layers (CFLs) to the outer surface of an anode-supported single cell. Hydrogen tungsten bronze and hydroxylated Sn formed on the Ni surface provide hydroxyls for the deposited solid carbon, removing it from the anodes as CO₂. Moreover, the use of hydrophilic Sn or Sb-incorporated Ni-GDC CFLs prevents the anode from being exposed directly to hydrocarbon fuels and controls the solid carbon accumulation similarly to the former strategy. / text
179

Ultra-thin solid oxide fuel cells: materials and devices

Kerman, Kian 06 June 2014 (has links)
Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 - 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 - 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities. / Engineering and Applied Sciences
180

Development of perovskite and intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells

Lee, Ki-tae, 1971- 12 August 2011 (has links)
Not available / text

Page generated in 0.0183 seconds