• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Copper and nickel extraction from ammoniacal solution by LIX64N

DeRuiter, Randall Alan. January 1981 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1981. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 99-102).
2

A fundamental evaluation of the atmospheric pre-leaching section of the nickel-copper matte treatment process /

Lamya, Rodrick Mulenga. January 2007 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / Bibliography. Also available via the Internet.
3

Electrodeposition, magnetism and growth studies of cobalt, nickel and copper

Cooper, Joshaniel Francis Keany January 2012 (has links)
No description available.
4

Indentation characterisation for design of coated systems

Tuck, Jonathan R. January 2001 (has links)
No description available.
5

The Development of Ni1-x-yCuxMgyO-SDC Anode for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)

Monrudee, Phongaksorn January 2010 (has links)
Solid oxide fuel cells (SOFCs) conventionally operate between 800 and 1000°C. The barriers for full-scale commercialization of SOFCs are the high cost and relatively poor long-term stability due to the high temperatures used in current state-of-the-art SOFCs. One solution is to decrease the operating temperature, e.g. to 550-750°C but this requires developing new electrolytes and electrode materials. Also, to increase efficiency and practicality, the anode should be able to internally reform hydrocarbon fuels especially methane because it is the most common hydrocarbon in natural gas. The overall goal of this research is to develop a coke-tolerant Ni1-x-yCuxMgyO-SDC anode for methane fuelled IT-SOFCs. The Ni-Cu-Mg-O-SDC anode has been chosen based on the premises that doped-ceria is suitable for intermediate operating temperatures (550-800°C), Ni is known as an active metal and good electronic conductor, Cu increases resistance to coking, MgO helps prevent agglomeration of Ni during reduction, and finally SDC improves oxide ion transport to the cell at this intermediate temperature range. In this work, these materials were characterized in three primary ways: material physical and chemical properties, methane steam reforming activity and electrochemical performance. Two different methods have been used to add Cu to Ni1-yMgyO: a one-step co-precipitation method and a two-step co-precipitation/impregnation method. For the first method, Ni1-x-yCuxMgyO was synthesized via co-precipitation of Ni, Mg and Cu. In the two-step method, Ni0.9Mg0.1O was first prepared by co-precipitation, followed by addition of copper to Ni0.9Mg0.1O by impregnation. However, co-precipitation of all metal in one step limits the sintering temperature of the anode in the cell fabrication due to the low boiling point of CuO. Therefore, co-precipitation of Cu is not a practical method and only Cu impregnation should be considered for practical SOFC applications. It was found that the addition of Mg (Ni0.9Mg0.1O) lowers the reducibility of NiO. Addition of Cu to Ni0.9Mg0.1O up to 5% shows similar reducibility as Ni0.9Mg0.1O. The reducibility of Ni1-x-yCuxMgyO becomes lower when the Cu content is increased to 10%. Nonetheless, all materials are fully reduced at 750ºC. The XRD patterns of pure NiO, Ni0.9Mg0.1O, and the Cu-containing material when Cu is less than 10 mol% are similar. The lower reducibility of Ni-Mg-O and Ni-Cu-Mg-O compared to NiO indicates that they form a solid solution with NiO as the matrix. Solid oxide fuel cells (SOFCs) conventionally operate between 800 and 1000°C. The barriers for full-scale commercialization of SOFCs are the high cost and relatively poor long-term stability due to the high temperatures used in current state-of-the-art SOFCs. One solution is to decrease the operating temperature, e.g. to 550-750°C but this requires developing new electrolytes and electrode materials. Also, to increase efficiency and practicality, the anode should be able to internally reform hydrocarbon fuels especially methane because it is the most common hydrocarbon in natural gas. The overall goal of this research is to develop a coke-tolerant Ni1-x-yCuxMgyO-SDC anode for methane fuelled IT-SOFCs. The Ni-Cu-Mg-O-SDC anode has been chosen based on the premises that doped-ceria is suitable for intermediate operating temperatures (550-800°C), Ni is known as an active metal and good electronic conductor, Cu increases resistance to coking, MgO helps prevent agglomeration of Ni during reduction, and finally SDC improves oxide ion transport to the cell at this intermediate temperature range. In this work, these materials were characterized in three primary ways: material physical and chemical properties, methane steam reforming activity and electrochemical performance. Two different methods have been used to add Cu to Ni1-yMgyO: a one-step co-precipitation method and a two-step co-precipitation/impregnation method. For the first method, Ni1-x-yCuxMgyO was synthesized via co-precipitation of Ni, Mg and Cu. In the two-step method, Ni0.9Mg0.1O was first prepared by co-precipitation, followed by addition of copper to Ni0.9Mg0.1O by impregnation. However, co-precipitation of all metal in one step limits the sintering temperature of the anode in the cell fabrication due to the low boiling point of CuO. Therefore, co-precipitation of Cu is not a practical method and only Cu impregnation should be considered for practical SOFC applications. It was found that the addition of Mg (Ni0.9Mg0.1O) lowers the reducibility of NiO. Addition of Cu to Ni0.9Mg0.1O up to 5% shows similar reducibility as Ni0.9Mg0.1O. The reducibility of Ni1-x-yCuxMgyO becomes lower when the Cu content is increased to 10%. Nonetheless, all materials are fully reduced at 750ºC. The XRD patterns of pure NiO, Ni0.9Mg0.1O, and the Cu-containing material when Cu is less than 10 mol% are similar. The lower reducibility of Ni-Mg-O and Ni-Cu-Mg-O compared to NiO indicates that they form a solid solution with NiO as the matrix. Addition of Mg also lowers the BET specific surface area from 11.5 m2/g for NiO:SDC to 10.4 m2/g for Ni0.9Mg0.1O. The surface area is further reduced when Cu is added; for example, at 10% Cu, the surface area is 8.2 m2/g. The activity of 50wt% Ni1-x-yCuxMgyO/50wt% SDC samples for methane steam reforming (SMR) and water-gas-shift reaction (WGS) was evaluated in a fully automated catalytic fixed-bed reactor where the exiting gases were analyzed online by a gas chromatograph (GC). The tests were performed at steam-to-carbon ratios (S/C) of 3, 2 and 1, and at temperatures of 750°C and 650°C for twenty hours. Higher methane conversions were obtained at the higher temperature and higher S/C ratio. Higher methane conversion are obtained using NiO:SDC and Ni0.9Mg0.1O:SDC than Ni-Cu-Mg-O. The conversion decreases with increasing Cu content. Over NiO:SDC and Ni0.9Mg0.1O:SDC the methane conversions are the same; for example 85% at 750°C for S/C of 3. At the same conditions, impregnation of 5%Cu and 10%Cu yields lower conversions: 62% and 48%, respectively. The activity for the WGS reaction was determined by mornitoring CO2/(CO+CO2) ratio. As expected because WGS is a moderately exothermic reaction, this ratio decreases when increasing the temperature. However, the CO2/(CO+CO2) ratio increases with higher S/C. The results indicate that adding Mg does not affect the WGS activity of NiO. The WGS activity of Ni0.9Mg0.1O:SDC is higher when Cu is added. The effect of additional Cu is more pronounced at 650ºC. At 750°C, changing the amount of Cu does not change the WGS activity because the WGS reaction rapidly reaches equilibrium at this high temperature. At 750°C for S/C of 1, carbon filaments were found in all samples. At 650ºC, different types of deposited carbon were observed: carbon fibers and thin graphite layers. Spent NiO:SDC had the longest carbon fibers. Addition of Mg significantly reduced the formation of carbon fibers. Impregnating 5% Cu on Ni0.9Mg0.1O:SDC did not change the type of deposited carbon. Monitoring the amount of deposited carbon on Ni0.9Mg0.1O:SDC, 3%Cu and 5%Cu impregnated on Ni0.9Mg0.1O:SDC for S/C of 0 at 750ºC showed that Cu addition deactivated methane cracking causing a reduction in the amount of carbon deposited. Electrochemical performance in the presence of dry and humidified hydrogen was determined at 600, 650, 700 and 750ºC. Electrolyte-supported cells constructed with four different anodes were tested using polarization curve and electrochemical impedance spectra. The four anodes were NiO:SDC, Ni0.9Mg0.1O:SDC, 3%Cu and 5%Cu on Ni0.9Mg0.1O:SDC. Adding Mg improved the maximum power density from 356 mW.cm-2 with NiO:SDC to 369 mW.cm-2 with Ni0.9Mg0.1O:SDC at 750ºC in dry hydrogen. Addition of Cu, on the other hand, lowered the maximum power density to 325 mW.cm-2 with 3%Cu impregnated and to 303 mW.cm-2 with 5% Cu impregnated. The cell with Ni0.9Mg0.1O:SDC was also tested under dry methane. To minimize methane cracking under this extreme condition, a current density of 0.10 A.cm-2 was always drawn when methane was present in the feed. The voltage decreased during the first hour from 0.8 to 0.5 V, then remained stable for 10 hours, and then started to drop again. Many small cracks were observed on the anode after completion of the electrochemical test, but there was no evidence of much carbon being deposited. In addition to dry methane, tests were also carried out, using the same material, with a H2O/CH4 mixture of 1/6 in order to generate a polarization curve at 750°C. Under these conditions, the maximum power density was 226 mW.cm-2. This is lower than the maximum power density obtained with humidified hydrogen, which was 362 mW.cm-2.
6

The Development of Ni1-x-yCuxMgyO-SDC Anode for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)

Monrudee, Phongaksorn January 2010 (has links)
Solid oxide fuel cells (SOFCs) conventionally operate between 800 and 1000°C. The barriers for full-scale commercialization of SOFCs are the high cost and relatively poor long-term stability due to the high temperatures used in current state-of-the-art SOFCs. One solution is to decrease the operating temperature, e.g. to 550-750°C but this requires developing new electrolytes and electrode materials. Also, to increase efficiency and practicality, the anode should be able to internally reform hydrocarbon fuels especially methane because it is the most common hydrocarbon in natural gas. The overall goal of this research is to develop a coke-tolerant Ni1-x-yCuxMgyO-SDC anode for methane fuelled IT-SOFCs. The Ni-Cu-Mg-O-SDC anode has been chosen based on the premises that doped-ceria is suitable for intermediate operating temperatures (550-800°C), Ni is known as an active metal and good electronic conductor, Cu increases resistance to coking, MgO helps prevent agglomeration of Ni during reduction, and finally SDC improves oxide ion transport to the cell at this intermediate temperature range. In this work, these materials were characterized in three primary ways: material physical and chemical properties, methane steam reforming activity and electrochemical performance. Two different methods have been used to add Cu to Ni1-yMgyO: a one-step co-precipitation method and a two-step co-precipitation/impregnation method. For the first method, Ni1-x-yCuxMgyO was synthesized via co-precipitation of Ni, Mg and Cu. In the two-step method, Ni0.9Mg0.1O was first prepared by co-precipitation, followed by addition of copper to Ni0.9Mg0.1O by impregnation. However, co-precipitation of all metal in one step limits the sintering temperature of the anode in the cell fabrication due to the low boiling point of CuO. Therefore, co-precipitation of Cu is not a practical method and only Cu impregnation should be considered for practical SOFC applications. It was found that the addition of Mg (Ni0.9Mg0.1O) lowers the reducibility of NiO. Addition of Cu to Ni0.9Mg0.1O up to 5% shows similar reducibility as Ni0.9Mg0.1O. The reducibility of Ni1-x-yCuxMgyO becomes lower when the Cu content is increased to 10%. Nonetheless, all materials are fully reduced at 750ºC. The XRD patterns of pure NiO, Ni0.9Mg0.1O, and the Cu-containing material when Cu is less than 10 mol% are similar. The lower reducibility of Ni-Mg-O and Ni-Cu-Mg-O compared to NiO indicates that they form a solid solution with NiO as the matrix. Solid oxide fuel cells (SOFCs) conventionally operate between 800 and 1000°C. The barriers for full-scale commercialization of SOFCs are the high cost and relatively poor long-term stability due to the high temperatures used in current state-of-the-art SOFCs. One solution is to decrease the operating temperature, e.g. to 550-750°C but this requires developing new electrolytes and electrode materials. Also, to increase efficiency and practicality, the anode should be able to internally reform hydrocarbon fuels especially methane because it is the most common hydrocarbon in natural gas. The overall goal of this research is to develop a coke-tolerant Ni1-x-yCuxMgyO-SDC anode for methane fuelled IT-SOFCs. The Ni-Cu-Mg-O-SDC anode has been chosen based on the premises that doped-ceria is suitable for intermediate operating temperatures (550-800°C), Ni is known as an active metal and good electronic conductor, Cu increases resistance to coking, MgO helps prevent agglomeration of Ni during reduction, and finally SDC improves oxide ion transport to the cell at this intermediate temperature range. In this work, these materials were characterized in three primary ways: material physical and chemical properties, methane steam reforming activity and electrochemical performance. Two different methods have been used to add Cu to Ni1-yMgyO: a one-step co-precipitation method and a two-step co-precipitation/impregnation method. For the first method, Ni1-x-yCuxMgyO was synthesized via co-precipitation of Ni, Mg and Cu. In the two-step method, Ni0.9Mg0.1O was first prepared by co-precipitation, followed by addition of copper to Ni0.9Mg0.1O by impregnation. However, co-precipitation of all metal in one step limits the sintering temperature of the anode in the cell fabrication due to the low boiling point of CuO. Therefore, co-precipitation of Cu is not a practical method and only Cu impregnation should be considered for practical SOFC applications. It was found that the addition of Mg (Ni0.9Mg0.1O) lowers the reducibility of NiO. Addition of Cu to Ni0.9Mg0.1O up to 5% shows similar reducibility as Ni0.9Mg0.1O. The reducibility of Ni1-x-yCuxMgyO becomes lower when the Cu content is increased to 10%. Nonetheless, all materials are fully reduced at 750ºC. The XRD patterns of pure NiO, Ni0.9Mg0.1O, and the Cu-containing material when Cu is less than 10 mol% are similar. The lower reducibility of Ni-Mg-O and Ni-Cu-Mg-O compared to NiO indicates that they form a solid solution with NiO as the matrix. Addition of Mg also lowers the BET specific surface area from 11.5 m2/g for NiO:SDC to 10.4 m2/g for Ni0.9Mg0.1O. The surface area is further reduced when Cu is added; for example, at 10% Cu, the surface area is 8.2 m2/g. The activity of 50wt% Ni1-x-yCuxMgyO/50wt% SDC samples for methane steam reforming (SMR) and water-gas-shift reaction (WGS) was evaluated in a fully automated catalytic fixed-bed reactor where the exiting gases were analyzed online by a gas chromatograph (GC). The tests were performed at steam-to-carbon ratios (S/C) of 3, 2 and 1, and at temperatures of 750°C and 650°C for twenty hours. Higher methane conversions were obtained at the higher temperature and higher S/C ratio. Higher methane conversion are obtained using NiO:SDC and Ni0.9Mg0.1O:SDC than Ni-Cu-Mg-O. The conversion decreases with increasing Cu content. Over NiO:SDC and Ni0.9Mg0.1O:SDC the methane conversions are the same; for example 85% at 750°C for S/C of 3. At the same conditions, impregnation of 5%Cu and 10%Cu yields lower conversions: 62% and 48%, respectively. The activity for the WGS reaction was determined by mornitoring CO2/(CO+CO2) ratio. As expected because WGS is a moderately exothermic reaction, this ratio decreases when increasing the temperature. However, the CO2/(CO+CO2) ratio increases with higher S/C. The results indicate that adding Mg does not affect the WGS activity of NiO. The WGS activity of Ni0.9Mg0.1O:SDC is higher when Cu is added. The effect of additional Cu is more pronounced at 650ºC. At 750°C, changing the amount of Cu does not change the WGS activity because the WGS reaction rapidly reaches equilibrium at this high temperature. At 750°C for S/C of 1, carbon filaments were found in all samples. At 650ºC, different types of deposited carbon were observed: carbon fibers and thin graphite layers. Spent NiO:SDC had the longest carbon fibers. Addition of Mg significantly reduced the formation of carbon fibers. Impregnating 5% Cu on Ni0.9Mg0.1O:SDC did not change the type of deposited carbon. Monitoring the amount of deposited carbon on Ni0.9Mg0.1O:SDC, 3%Cu and 5%Cu impregnated on Ni0.9Mg0.1O:SDC for S/C of 0 at 750ºC showed that Cu addition deactivated methane cracking causing a reduction in the amount of carbon deposited. Electrochemical performance in the presence of dry and humidified hydrogen was determined at 600, 650, 700 and 750ºC. Electrolyte-supported cells constructed with four different anodes were tested using polarization curve and electrochemical impedance spectra. The four anodes were NiO:SDC, Ni0.9Mg0.1O:SDC, 3%Cu and 5%Cu on Ni0.9Mg0.1O:SDC. Adding Mg improved the maximum power density from 356 mW.cm-2 with NiO:SDC to 369 mW.cm-2 with Ni0.9Mg0.1O:SDC at 750ºC in dry hydrogen. Addition of Cu, on the other hand, lowered the maximum power density to 325 mW.cm-2 with 3%Cu impregnated and to 303 mW.cm-2 with 5% Cu impregnated. The cell with Ni0.9Mg0.1O:SDC was also tested under dry methane. To minimize methane cracking under this extreme condition, a current density of 0.10 A.cm-2 was always drawn when methane was present in the feed. The voltage decreased during the first hour from 0.8 to 0.5 V, then remained stable for 10 hours, and then started to drop again. Many small cracks were observed on the anode after completion of the electrochemical test, but there was no evidence of much carbon being deposited. In addition to dry methane, tests were also carried out, using the same material, with a H2O/CH4 mixture of 1/6 in order to generate a polarization curve at 750°C. Under these conditions, the maximum power density was 226 mW.cm-2. This is lower than the maximum power density obtained with humidified hydrogen, which was 362 mW.cm-2.
7

Leaching of Ni-Cu-Fe-S Peirce Smith converter matte : effects of the Fe-endpoint and leaching conditions on kinetics and mineralogy.

Van Schalkwyk, R. F. 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: In a first stage atmospheric leach at the Lonmin Marikana base metals refinery, nickel-copper-iron-sulphur Peirce Smith converter matte is leached in recycled electrolyte from the electrowinning section. The electrolyte contains sulphuric acid, copper and nickel sulphates, and a small amount of iron sulphate. The converter matte contains mostly nickel, copper and sulphur (typically 48 %, 28 % and 23 %, respectively), but also minor amounts (<5 %) iron and cobalt. The matte also contains platinum group elements (PGEs) and other precious metals totalling 0.2 – 0.7 % (platinum, palladium, iridium, rhodium, ruthenium, osmium and some gold). The predominant mineral phases are heazlewoodite, chalcocite and a nickel-copper alloy phase, as well as some entrained slag and spinel minerals. The purpose of the first stage leach is to extract nickel, while simultaneously precipitating copper and PGEs contained in the recycled electrolyte. Nickel, cobalt and iron are leached by acid and oxygen. Copper is precipitated by a redox reaction in which copper ions oxidise nickel from the matte. The purpose of this study was to determine the effects of key variables on the performance of the first stage leach (specifically on the removal of PGEs and copper from solution and the overall extraction of nickel) and to improve fundamental understanding of these effects. Batch leaching tests were carried out to investigate the effects of the following factors: availability of oxygen, initial acid concentration, initial copper concentration, iron endpoint (iron content of the matte), solids/liquid ratio and stirring rate. Liquid samples were analysed with Atomic Absorption Spectroscopy (AA) to determine leaching kinetics. Characterisation of solid samples from leach tests by quantitative X-Ray diffraction (XRD) and scanning electron microscopy with an energy dispersive system (SEM-EDS) helped to improve understanding of the leaching mechanism. The oxidative leaching mechanism entails an initial period in which the alloy phase is leached by acid and oxygen, while copper reacts with the nickel-copper-alloy and heazlewoodite phases (which react galvanically with each other) to form a chalcocite precipitate. In a second reaction period, heazlewoodite was transformed to millerite by acid leaching and the particle structure became more porous. The rate of copper precipitation and nickel extraction were faster during the second reaction period than the first reaction period. Some copper leaching occurred once the leachable nickel (60 – 70 %) had been dissolved, provided that the solution was strongly acidic (pH < 2). The non-oxidative leaching mechanism entails a galvanic interaction, between the nickel-copper-alloy and heazlewoodite phases, in which nickel is leached from both phases and copper is precipitated as chalcocite. Leaching by acid was negligible in most non-oxidative tests. An initial fast period of copper precipitation was followed by a second slower period. The decrease in reaction rate can probably be linked to the decreasing availability of the nickel-copper-alloy phase. During non-oxidative leaching, the particle structure remained mostly intact. Copper precipitation kinetics under non-oxidative conditions was found to be slower than under oxidative conditions. The faster copper precipitation kinetics under oxidative conditions is most likely caused by an increase in porosity and reaction area as nickel is leached from the matte by acid and oxygen. The initial acid concentration, solids/liquid ratio and Fe-endpoint were the most important factors determining reaction kinetics under oxidative conditions. Low initial acid concentrations (37 g/L) and a high solids/liquid ratio improved the extent of copper precipitation. Nickel extraction was enhanced by low solids/liquid ratios and high initial acid concentrations (74 g/L). Nickel extraction was significantly less (56 % less in one instance) when leaching high iron mattes (5.7 % Fe) rather than low iron mattes (< 1 % Fe). Copper precipitation was initially faster when leaching a high iron matte, but slower nickel leaching from high iron mattes led to an excess of available acid, which resulted in copper being leached. The results suggest that high iron mattes will lead to poor copper and PGE precipitation in the first stage leach and also to lower nickel extractions. Consequently, Peirce Smith converting at the plant must be carefully controlled to avoid high iron mattes. Under non-oxidative conditions, the solids/liquid ratio and Fe-endpoint were the most important factors. The rate of copper precipitation was faster when a high iron matte was leached, so that a higher percentage copper was precipitated and more nickel was extracted from the matte. / AFRIKAANSE OPSOMMING: As ‘n eerste stap in die Lonmin Marikana basis-metale veredelingsaanleg word nikkel-koper-yster-swawel Peirce-Smith-converter-mat geloog in elektroliet wat hersirkuleer word vanaf die aanleg se koper-elektroplaterings-afdeling. Die loging word by atmosferiese druk uitgevoer. Die elektroliet bevat swawelsuur, koper- en nikkel-sulfate en ‘n klein hoeveelheid ystersulfaat. Die mat bevat hoofsaaklik nikkel, koper en swawel (tipies 48 %, 28 % en 23 %), maar ook klein hoeveelhede (< 5 %) yster en kobalt. Verder maak Platinum Groep Elemente (PGE’s) en ander waardevolle metale (platinum, palladium, iridium, rhodium, ruthenium, osmium en goud) 0.2 % tot 0.7 % van die massa van die mat uit. In terme van minerale bestaan die materiaal hoofsaaklik uit heazlewoodite, chalcocite en ‘n nikkel-koper allooi fase, asook slak en spinel minerale, wat tydens Peirce-Smith-converting weens meesleuring in die mat rapporteer. Die doel van die eerste stadium loog is om nikkel op te los, terwyl koper en PGE’s wat in die elektroliet voorkom presipiteer moet word. Nikkel, kobalt en koper word geloog in reaksies met suurstof en swawelsuur. Koper word presipiteer deur middel van ‘n redoks reaksie waarin koper-ione nikkel in die mat oksideer. Die doel van hierdie studie was om die effekte van sleutelveranderlikes op die proses te bepaal (spesifiek hoe nikkel-loging en koper presipitasie affekteer word) en om fundamentele begrip van die veranderlikes en hul effekte te verkry. Lot loogtoetse is uitgevoer op ‘n laboratorium-skaal en die effekte van die volgende faktore is ondersoek: beskibaarheid van suurstof, begin suurkonsentrasie, yster eindpunt (die ysterinhoud van die mat), vastestof/vloeistof verhouding en die roertempo. Vloeistof monsters geneem tydens loogtoetse is geanaliseer met behulp van Atoom Absorpsie Spektroskopie (AA) om kinetika te bepaal. Vastestof monsters is ook geneem tydens loogtoetse en kwantitatiewe X-straal diffraksie (XRD), asook skanderings-elektron-mikroskopie met ‘n energie dispersie sisteem (SEM-EDS) is gebruik om die materiaal te karakteriseer en die logingsmeganisme te verduidelik. Die oksidatiewe logingsmeganisme behels ‘n aanvanklike periode waartydens die allooi fase geloog word deur suur en suurstof, terwyl koper presipiteer om chalcocite te vorm as gevolg van ‘n reaksie waarin galvanise interaksie tussen die nikkel-koperallooi en heazlewoodite fases ‘n belangrike rol speel. In ‘n tweede reaksie periode is heazlewoodite geloog deur suur om millerite te vorm. Tydens hierdie tweede fase het die partikel struktuur meer porieus geword. Die tempo van koper presipitasie en nikkel loging was vinniger tydens die tweede reaksie periode as tydens die eerste. Koper is geloog indien die oplossing baie suur was (pH < 2) en die loogbare nikkel (60 – 70 %) reeds opgelos het. Die nie-oksidatiewe logingsmeganisme behels galvaniese interaksie tussen die nikkel-koper-allooi en heazlewoodite fases, wat lei tot koper presipitasie as chalcocite. Loging deur swawelsuur was onbeduidend. ‘n Aanvanklike vinnige periode van koper presipitasie tydens nie-oksidatiewe toetse is gevolg deur ‘n tweede stadiger periode. Die afname in reaksietempo kan waarskynlik verklaar word deur die afnemende beskikbaarheid van die nikkel-koper-allooi fase. Tydens nieoksidatiewe loging het die partikel struktuur redelik onveranderd gebly. Koper presipitasie kinetika in nie-oksidatiewe toetse was stadiger as in oksidatiewe toetse. Die belangrikste faktore wat kinetika in oksidatiewe toetse beïnvloed het was die suurkonsentrasie, vastestof/vloeistof verhouding en die yster-eindpunt. Lae beginsuurkonsentrasies (37 g/L) en ‘n hoë vastestof/vloeistof verhouding het gelei daartoe dat meer koper uit die elektroliet herwin is. Nikkel ekstraksie was hoër indien die vastestof/vloeistof verhouding laag was en die begin suurkonsentrasie hoog (74 g/L). Nikkel ekstraksie was beduidend laer (56 % laer in een geval) wanneer hoë-yster mat (5.7 % Fe) geloog is, eerder as lae yster mat (< 1 % Fe). Wanneer ‘n hoë yster mat geloog is, was koper presipitasie aanvanklik vinniger, maar weens stadige nikkel-ekstraksie-tempos was ‘n oormaat van suur beskikbaar sodat koper uiteindelik geloog is. PGE presipitasie is ook nadelig beïnvloed wanneer koper geloog is en veral tydens toetse met hoë yster mat. Die mees belangrike faktore wat nie-oksidatiewe loging beïnvloed het was die vastestof/vloeistof verhouding en die yster-eindpunt. Die tempo van koper presipitasie was vinniger in toetse met ‘n hoë yster mat, sodat ‘n hoër persentasie koper presipiteer het en meer nikkel opgelos het wanneer ‘n hoë yster mat geloog is.
8

Local adsorption structure determination of chemically-specific species using normal incidence X-ray standing wavefields

Jackson, Gavin John January 1999 (has links)
No description available.
9

Growth and characterization of Ni←xCu←1←-←x alloy films, Ni←xCu←1←-←x/Ni←yCu←1←-←y multilayers, and nanowires

Kazeminezhad, Iraj January 2001 (has links)
No description available.
10

Moessbauer spectroscopic and structural studies of magnetic multilayers

Case, Simon January 2001 (has links)
No description available.

Page generated in 0.028 seconds