• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 26
  • 22
  • 12
  • 9
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 448
  • 448
  • 428
  • 297
  • 164
  • 94
  • 75
  • 61
  • 54
  • 43
  • 41
  • 38
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Mathematical Analysis of Planar Solid Oxide Fuel Cells

Pramuanjaroenkij, Anchasa 13 May 2009 (has links)
The mathematical analysis has been developed by using finite volume method, experimental data from literatures, and solving numerically to predict solid oxide fuel cell performances with different operating conditions and different material properties. The in-house program presents flow fields, temperature distributions, and performance predictions of typical solid oxide fuel cells operating at different temperatures, 1000 C, 800 C, 600 C, and 500 C, and different electrolyte materials, Yttria-Stabilized zirconia (YSZ) and Gadolinia-doped ceria (CGO). From performance predictions show that the performance of an anode-supported planar SOFC is better than that of an electrolyte-supported planar SOFC for the same material used, same electrode electrochemical considerations, and same operating conditions. The anode-supported solid oxide fuel cells can be used to give the high power density in the higher current density range than the electrolyte-supported solid oxide fuel cells. Even though the electrolyte-supported solid oxide fuel cells give the lower power density and can operate in the lower current density range but they can be used as a small power generator which is portable and provide low power. Furthermore, it is shown that the effect of the electrolyte materials plays important roles to the performance predictions. This should be noted that performance comparisons are obtained by using the same electrode materials. The YSZ-electrolyte solid oxide fuel cells in this work show higher performance than the CGO-electrolyte solid oxide fuel cells when SOFCs operate above 756 C. On the other hand, when CGO based SOFCs operate under 756 C, they shows higher performance than YSZ based SOFCs because the conductivity values of CGO are higher than that of YSZ temperatures lower than 756 C. Since the CGO conductivity in this work is high and the effects of different electrode materials, they can be implied that conductivity values of electrolyte and electrode materials have to be improved.
52

Impedance model of a solid oxide fuel cell for degradation diagnosis

Gazzarri, Javier Ignacio 05 1900 (has links)
A numerical model of the steady state and alternating current behaviour of a solid-oxide fuel cell is presented to explore the possibilities to diagnose and identify degradation mechanisms in a minimally invasive way using impedance spectroscopy. This is the first report of an SOFC impedance model to incorporate degradation, as well as the first one to include the ribbed interconnect geometry, using a 2-D approximation. Simulated degradation modes include: electrode/electrolyte delamination, interconnect oxidation, interconnect/electrode interface detachment, and anode sulfur poisoning. Detailed electrode-level simulation replaces the traditional equivalent circuit approach, allowing the simulation of degradation mechanisms that alter the shape of the current path. The SOFC impedance results from calculating the cell response to a small oscillatory perturbation in potential. Starting from the general equations for mass and charge transport, and assuming isothermal and isobaric conditions, the system variables are decomposed into a steady-state component and a small perturbation around the operating point. On account of the small size of the imposed perturbation, the time dependence is eliminated, and the original equations are converted to a new linear, time independent, complex-valued system, which is very convenient from a numerical viewpoint. Geometrical and physical modifications of the model simulate the aforementioned degradation modes, causing variations in the impedance. The possibility to detect unique impedance signatures is discussed, along with a study of the impact of input parameter inaccuracies and parameter interaction on the presented results. Finally, a study of pairs of concurrent degradation modes reveals the method’s strengths and limitations in terms of its diagnosis capabilities.
53

Three phase boundary length and effective diffusivity in modeled sintered composite solid oxide fuel cell electrodes

Metcalfe, Thomas Craig 05 1900 (has links)
Solid oxide fuel cells with graded electrodes consisting of multiple composite layers yield generally lower polarization resistances than single layer composite electrodes. Optimization of the performance of solid oxide fuel cells with graded electrode composition and/or microstructure requires an evaluation of both the three phase boundary length per unit volume and the effective diffusion coefficient in order to provide insight into how these properties vary over the design space. A numerical methodology for studying the three phase boundary length and effective diffusivity in composite electrode layers with controlled properties is developed. A three dimensional solid model of a sintered composite electrode is generated for which the mean particle diameter, composition, and total porosity may be specified as independent variables. The total three phase boundary length for the modeled electrode is calculated and tomographic methods are used to estimate the fraction of this length over which the electrochemical reactions can theoretically occur. Furthermore, the open porosity of the modeled electrode is identified and the effective diffusion coefficient is extracted from the solution of the concentration of the diffusing species within the open porosity. Selected example electrode models are used to illustrate the application of the methods developed, and the resulting connected three phase boundary length and diffusion coefficients are compared. A significant result is the need for thickness-specific effective diffusivity to be determined, rather than the general volume averaged property, for electrodes with porosity between the upper and lower percolation thresholds. As the demand for current increases, more of the connected three phase boundaries become active, and therefore a greater fraction of the electrode layer is utilized for a given geometry, resulting in a higher apparent effective diffusivity compared to the same electrode geometry operating at a lower current. The methods developed in this work may be used within a macroscopic electrode performance model to investigate optimal designs for solid oxide fuel cell electrodes with stepwise graded composition and/or microstructure.
54

Fabrication of Nanostructured Electrodes and Interfaces Using Combustion CVD

Liu, Ying 25 August 2005 (has links)
Reducing fabrication and operation costs while maintaining high performance is a major consideration for the design of a new generation of solid-state ionic devices such as fuel cells, batteries, and sensors. The objective of this research is to fabricate nanostructured materials for energy storage and conversion, particularly porous electrodes with nanostructured features for solid oxide fuel cells (SOFCs) and high surface area films for gas sensing using a combustion CVD process. This research started with the evaluation of the most important deposition parameters: deposition temperature, deposition time, precursor concentration, and substrate. With the optimum deposition parameters, highly porous and nanostructured electrodes for low-temperature SOFCs have been then fabricated. Further, nanostructured and functionally graded La0.8Sr0.2MnO2-La0.8SrCoO3-Gd0.1Ce0.9O2 composite cathodes were fabricated on YSZ electrolyte supports. Extremely low interfacial polarization resistances (i.e. 0.43 Wcm2 at 700¡ãC) and high power densities (i.e. 481 mW/cm2 at 800¡ãC) were generated at operating temperature range of 600¡ãC-850¡ãC. The original combustion CVD process is modified to directly employ solid ceramic powder instead of clear solution for fabrication of porous electrodes for solid oxide fuel cells. Solid particles of SOFC electrode materials suspended in an organic solvent were burned in a combustion flame, depositing a porous cathode on an anode supported electrolyte. Combustion CVD was also employed to fabricate highly porous and nanostructured SnO2 thin film gas sensors with Pt interdigitated electrodes. The as-prepared SnO2 gas sensors were tested for ethanol vapor sensing behavior in the temperature range of 200-500¡ãC and showed excellent sensitivity, selectivity, and speed of response. Moreover, several novel nanostructures were synthesized using a combustion CVD process, including SnO2 nanotubes with square-shaped or rectangular cross sections, well-aligned ZnO nanorods, and two-dimensional ZnO flakes. Solid-state gas sensors based on single piece of these nanostructures demonstrated superior gas sensing performances. These size-tunable nanostructures could be the building blocks of or a template for fabrication of functional devices. In summary, this research has developed new ways for fabrication of high-performance solid-state ionic devices and has helped generating fundamental understanding of the correlation between processing conditions, microstructure, and properties of the synthesized structures.
55

Design, Fabrication and Characterization of Novel Planar Solid Oxide Fuel Cells

Compson, Charles E. 27 February 2007 (has links)
Planar solid oxide fuel cells (SOFCs) were designed, fabricated and characterized in order to develop a (1) cost-effective method for fabrication of thin electrolyte layers, (2) hermetic sealing and (3) stable interconnects. Electrophoretic deposition (EPD) was discovered to be an excellent method for fabricating dense electrolyte layers of about 5m thick on porous non-conducting substrates. The EPD process was thoroughly studied from proof-of-concept to statistical reproducibility, deposition mechanism, modeling and process optimization. Deposition on non-conducting substrates was found to follow many of the same fundamental trends as that on conductive substrates except for the voltage efficiency and detailed charge transfer mechanism. Eventually, the process was optimized such that an SOFC was fabricated that achieved 1.1W/cm2 at 850C. Further, a novel sealless planar SOFC was designed that incorporates a hermetic interface between the electrolyte and interconnect similar to tubular and honeycomb designs. The hermetic interface successfully acted as a blocking electrode under DC polarization, indicating its potential to act as a sealant. Leakage rates across the interface were 0.027sccm at 750c, similar to polycrystalline mica seals. Through a process of tape casting and lamination, a two-cell stack without sealant was fabricated and achieved a power density of 75mW/cm2 at 750C. Finally, the degradation rate of silver and silver-based interconnects was studied under static and dual-atmosphere conditions. Corrosion of silver grain boundaries along with sublimation losses results in the formation of large pores, resulting in up to 30 of anode oxidation after 8hrs testing at 750c. Further stability studies indicated that silver-based interconnects would be better suited for applications at operating temperatures less than 650C.
56

A study of deposition and electrochemical performance of cathode films for intermediate temperature solid oxide fuel cell

Hsu, Ching-Shiung 29 July 2008 (has links)
In this study, deposition of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) oxide films on Gd-doped ceria (CGO) substrates by an electrostatic assisted ultrasonic spray pyrolysis (EAUSP) method was demonstrated for the first time. The electrostatic field employed for directing the aerosol stream towards the substrate was shown to be indispensable for film deposition. The XRD result indicates that a single phase of cubic perovskite was obtained in the calcined films. SEM examination reveals that the electric field strength had a profound effect on film porosity with weaker field resulting in higher porosity. The results of impedance measurement on LSCF//CGO//LSCF cells indicate that the area specific resistance (ASR) values of current LSCF films and their activation energies are comparable to that obtained by conventional sample preparation routes. In view of the simplicity, efficiency and economy of film deposition and the sound electrochemical characteristics of the obtained films manifested in current work, it is concluded that EAUSP method is a promising method for preparation of SOFC electrode films. Besides the EAUSP method, electrostatic spray deposition (ESD) method was also employed to deposit LSCF films. The growth mechanism of LSCF films deposited on silicon wafer was studied by examining a series of films obtained with increasing deposition durations. The results show that the film formation mechanism in the initial stage depends on the deposition temperature, and films with a unique porous structure were obtained when a deposition temperature lower than the boiling point of the precursor solution was used. Deposition parameters were also varied systematically to deposit LSCF cathode films on CGO substrates to obtain symmetrical cells. The microstructure and morphology of obtained films were investigated by X-ray diffraction and SEM, and the area specific resistances of the symmetrical cells measured by electrochemical impedance spectroscopy (EIS). The minimum interfacial ASR value associated with the LSCF cathodes was 0.25 ohm¡Ecm2 at700 ¢XC. NiO-SDC (Sm0.2Ce0.8O1.9)/SDC/LSCF (La0.6Sr0.4Co0.2Fe0.8O3-£_) cells with either single layer or double layer cathode were also fabricated and tested. The single layer LSCF cathode was made by stencil printing while the double layer one was prepared by depositing a thin porous layer on the SDC electrolyte by ESD before stencil printing LSCF. The maximum power density increased from 1.04 to 1.18 Wcm-2 at 700¢XC when the LSCF inter-layer was introduced. The results showed that the ASRs of the cells reduced to half with the addition of the LSCF inter-layer.
57

Characterization of material behavior during the manufacturing process of a co-extruded solid oxide fuel cell

Eisele, Prescott L. January 2004 (has links) (PDF)
Thesis (M.S.)--Engineering, Georgia Institute of Technology, 2004. / McDowell, David, Committee Chair; Neu, Richard, Committee Member; Lee, Jim, Committee Member; Cochran, Joe, Committee Member. Includes bibliographical references (leaves 159-162).
58

A numerical study of current distribution inside the cathode and electrolyte of a solid oxide fuel cell

Pakalapati, Suryanarayana Raju. January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xii, 100 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 85-90).
59

Manufacturing of intermediate-temperature solid oxide fuel cells using novel cathode compositions

Torres Garibay, Claudia Isela 28 August 2008 (has links)
Not available / text
60

Manufacturing of intermediate-temperature solid oxide fuel cells using novel cathode compositions

Torres Garibay, Claudia Isela, 1972- 18 August 2011 (has links)
Not available / text

Page generated in 0.0415 seconds