• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical analysis of air-water flows in hydraulic structures using computational fluid dynamics (CFD)

Bayón Barrachina, Arnau 15 September 2018 (has links)
The new legal regulations derived from climate change dictate that hydraulic structures must be designed to handle flood events associated with return periods up to 10,000 years. This obviously involves adapting the existing infrastructure to meet such requirements. In order to avoid risks in the restitution of the flow discharged to rivers, such as bank overflows or streambed erosion and scour processes, hydraulic design must be supported by reliable tools capable of reproducing the behavior of hydraulic structures. In the work presented herein, a fully three-dimensional CFD model to reproduce the behavior of different types of air-water flow in hydraulic structures is presented. The flow is assumed to be turbulent, isotropic and incompressible. Several RANS turbulence models are tested and structured rectangular meshes are employed to discretize the analyzed domain. The presence of two fluids is modeled using different VOF approaches and simulations are run using the PIMPLE algorithm. The model is implemented using the open-source platform OpenFOAM and its performance is compared to the commercial code FLOW-3D. The analysis is conducted separately on two different parts of hydraulic structures, namely: the spillway and the stilling basin. Additionally, a case of practical application, where the model reproduces the flow of a real-life case, is also presented in order to prove the suitability of the model to actual design cases. Mesh independence and model validation using experimental data are checked in the results of all the case studies. The sensitivity of the presented model to certain parameters is extensively discussed using different indicator variables. Among these parameters are turbulence closure, discretization scheme, surface tracking approach, CFD code or boundary conditions. Pros and contras of each of them are addressed. The analyzed turbulence models are the Standard k ¿ ¿, the Realizable k ¿ ¿, the RNG k ¿ ¿, and the SST k ¿ ¿. The discretization schemes under study are: a first-order upwind method, the second-order limited Van Leer method, and a second-order limited central difference method. The VOF approaches analyzed are the Partial VOF, as implemented in OpenFOAM, and the TruVOF, as implemented in FLOW-3D. In most cases, the Standard k ¿ ¿ model provides the most accurate estimations of water free surface profiles, although the rest of variables, with few exceptions, are better predicted by the RNG k ¿ ¿. The latter model generally requires slightly longer computation times. The SST k ¿ ¿ reproduces correctly the phenomena under study, although it generally turned out to be less accurate than its k ¿ ¿ counterparts. As regards the comparison among VOF approaches and codes, it is impossible to determine which one performs best. E.g. OpenFOAM, using the Partial VOF, managed to reproduce the in- ternal hydraulic jump structure and all derived variables better than FLOW-3D, using the TruVOF, although the latter seems to capture better the momentum transfer and so all derived variables. In the case of flow in stepped spillways, OpenFOAM captures better the velocity profiles, although FLOW-3D is more accurate when estimating the water free surface profile. It is worth remark- ing that not even their response to certain model parameters is comparable. E.g. FLOW-3D is significantly less sensitive to mesh refinement than OpenFOAM. Given the result accuracy achieved in all cases, the proposed model is fully applicable to more complex design cases, where stilling basins, stepped spillways and hydraulic structures in general must be investigated. / Las nuevas disposiciones legales derivadas del cambio climático dictaminan que las estructuras hidráulicas sean capaces de funcionar correctamente con eventos de inundación asociados a periodos de retorno de hasta 10,000 años. Esto, obviamente, implica adaptar la infraestructura existente para satisfacer dichos requerimientos. A fin de evitar riesgos en la restitución de los caudales vertidos al río, como desbordamientos o procesos erosivos y de socavación, el diseño hidráulico ha de sustentarse en herramientas fiables capaces de reproducir el comportamiento de las estructuras hidráulicas. En este trabajo, se presenta un modelo numérico CFD completamente tridimensional para reproducir el comportamiento de diferentes tipos de flujo aire-agua en estructuras hidráulicas. Se asume que el flujo es turbulento, isotrópico e incompresible. Diversos modelos de turbulencia RANS son contrastados y se emplean mallas estructuradas rectanuglares para discretizar el dominio analizado. La presencia de dos fluidos es modelada utilizando diferentes enfoques VOF y las simulaciones son ejecutadas empleando el algoritmo PIMPLE. El modelo es implementado mediante la plataforma de código abierto OpenFOAM y su respuesta es comparada con la del modelo comercial FLOW-3D. El análisis se lleva a cabo sobre dos partes diferentes de una estructura hidráulica, a saber, el aliviadero y el cuenco amortiguador, de forma separada. Además, un caso de aplicación práctica, donde el modelo reproduce el flujo en una estructura real, es presentado también a fin de probar la adecuación del modelo a casos de diseño aplicado. Se comprueban la independencia de la malla y la validación con datos experimentales de los resultados de todos los casos de estudio. La sensibilidad del modelo presentado a ciertos parámetros es analizada de forma exhaustiva empleando diferentes variables indicadoras. Los pros y contras de cada uno de éstos son planteados. Los modelos de turbulencia analizados son el Standard k-epsilon, el Realizable k-epsilon, el RNG k-epsilon y el SST k-omega. Los esquemas de discretización estudiados son: un método de primer orden upwind, uno de Van Leer de segundo orden y un esquema de segundo orden limitado de diferencias centradas. Los enfoques VOF analizados son el Partial VOF, implementado en OpenFOAM, y el TruVOF, implementado en FLOW-3D. En la mayoría de casos, el modelo k-epsilon aporta las estimaciones más precisas de perfiles de lámina libre de agua, pese a que el resto de variables, con alguna excepción, son mejor predichas por el RNG k-epsilon. Este modelo generalmente requiere mayores tiempos de cálculo. El k-omega reproduce correctamente los fenómenos bajo estudio, pese a que su precisión es generalmente más baja que la de los modelos k-epsilon. En lo que respecta a la comparación entre enfoques VOF y códigos, es imposible determinar cuál es el mejor. Por ejemplo, OpenFOAM, empleando el Partial VOF, logra reproducir la estructura interna del resalto hidráulico y todas las variables derivadas mejor que FLOW-3D, empleando el TruVOF, a pesar de que este último parece capturar mejor la transferencia de cantidad de movimiento y, por tanto, todas las variables derivadas. En el caso del flujo en aliviaderos escalonados, OpenFOAM captura mejor los perfiles de velocidad, pese a que FLOW-3D es más preciso en la estimación de los perfiles de lámina libre de agua. Conviene recalcar que ni tan sólo su respuesta a ciertos parámetros del modelo es comparable. Por ejemplo, FLOW-3D es significativamente menos sensible al refinado de malla que OpenFOAM. A la luz de la precisión de los resultados obtenidos en todos los casos, el modelo propuesto es completamente aplicable a casos de diseño más complejos, donde cuencos amortiguadores, aliviaderos escalonados y estructuras hidráulicas en general han de ser investigadas. / Les noves disposicions legals derivades del canvi climàtic dictaminen que cal que les estructures hidràuliques siguen capaces de funcionar correctament amb esdeveniments d'inundació associats a períodes de retorn de fins a 10,000 anys. Això, òbviament, implica adaptar la infraestrctura existent per satisfer aquests requeriments. A fi d'evitar riscs en la restitució dels cabals vessats al riu, com desbordaments o processos erosius i de socavació, el disseny hidràulic ha de recolzar-se en ferramentes fiables capaces de reproduir el comportament de les estructures hidràuliques. En aquest treball, es prsenta un model numèric CFD completament tridimensional per a reproduir el comportament de diferents tipus de flux aire-aigua en estructures hidràuliques. S'assumeix que el flux és turbulent, isotròpic i incompressible. Diferents models de turbulència RANS són contrastats i s'empren malles estructurades rectangulars per discretitzar el domini analitzat. La presència de dos fluids és modelada utilitzant diferents enfocaments VOF i les simulacions són executades emprant l'algorisme PIMPLE. El model és implementat mitjançant la plataforma de codi obert OpenFOAM i la seua resposta és comparada amb la del codi comercial FLOW-3D. L'anàlisi es du a terme sobre les diferents parts d'una estructura hidràulica, a saber, sobreeixidors esgraonats i vas esmorteïdor, de forma separada. A més, un cas d'aplicació pràctica, on el model reprodueix el flux a una estructura real, és presentat també a fi de provar l'adequació del model a casos de disseny aplicat. Es comproven la independència de la malla i la validació amb dades experimentals dels resultats de tots els casos d'estudi. La sensibilitat del model presentat a certs paràmetres és analitzada de forma exhaustiva emprant diferents variables indicadores. Els pros i contres de cadascun d'aquests són plantejats. Els models de turbulència analitzats són l'Standard k-epsilon, el Realizable k-epsilon, el RNG k-epsilon i l'SST k-omega. Els esquemes de discretització estudiats són: un mètode de primer ordre upwind, un de Van Leer de segon ordre i un esquema de segon ordre limitat de diferències centrades. Els enfocaments VOF analitzats són el Partial VOF, implementat en OpenFOAM, i el TruVOF, implementat en FLOW-3D. En la majoria de casos, el model Standard k-epsilon aporta les estimacions més precises de perfils de làmina lliure d'aigua, tot i que la resta de variables, amb alguna excepció, són millor predites pel RNG k-epsilon. Aquest model generalment requereix majors temps de càlcul. El k-omega reprodueix correctament els fenòmens sota estudi, tot i que la seua precisió és generalment més baixa que la dels models k-epsilon. Pel que fa la comparació entre enfocaments VOF i codis, és impossible determinar quin és el millor. Per exemple, OpenFOAM, emprant el Partial VOF, aconsegueix reproduir l'estructura interna del ressalt hidràulic i totes les variables derivades millor que FLOW-3D, emprant el TruVOF, tot i que aquest últim pareix capturar millor la transferència de quantitat de moviment i, per tant, totes les variables derivades. En el cas del flux en sobreeixidors esgraonats, OpenFOAM captura millor els perfils de velocitat, tot i que FLOW-3D és més precís en estimar els perfils de làmina lliure d'aigua. Cal deixar palès que ni tan sols la seua resposta a certs paràmetres del model és comparable. Per exemple, FLOW-3D és significativament menys sensible al refinament de malla que OpenFOAM. En base a la precisió dels resultats obtinguts en tots els casos, el model proposat és completament aplicable a casos de disseny més complexos, on vassos esmorteïdors, sobreeixidors esgraonats i estructures hidràuliques en general han de ser investigades. / Bayón Barrachina, A. (2017). Numerical analysis of air-water flows in hydraulic structures using computational fluid dynamics (CFD) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90440 / TESIS
2

Energy-efficient Industrial processes : An investigation in the power consumption, power number, thrust force and torque requirement on a rotating bed reactor

Ali Haji, Kasim January 2021 (has links)
Rotating bed reactors are used throughout the process industry. They are usedboth in the chemical industry and other industrial sectors, such as pharmaceuticals and the textile industry in decolorization due to by-products or contaminants.SpinChem AB manufactures rotary bed reactors (RBRs) to perform chemical reactions between liquids and solids. The solid material consists of spherical particles0.1 mm - 1 mm in diameter that are packed between two cylindrical spaces in theRBR. The goal of this project work is to determine the power number, the axial force thatthe RBRn experiences, the torque requirement on the motor and power consumptionof the the RBR when a fully developed turbulent flow is achieved. The purpose ofthe work is to optimize the technology from the energy usage point of view, makethe product simple and easily accessible for chemical and industrial processes as acontribution to the development of sustainable society. In order to achieve the purpose and goal of the projects, Computational Fluid Dynamics (CFD) combined withexperimental models were used. Computation were made in COMSOL Multiphysicsfor two turbulence models. In it, the rotating machinery was used with moving meshtechnique for both the standard k−ε model and the SST k−ω turbulence models.The result is then compared with the empirical models. Investigation were done for two models of the rotating bed reactors (RBRs). Onemodel is called RBR S2 with relatively small size and RBR S14 which is a muchlarger version. For RBR S2 the experimental results turned out to be, an output ofpower number which is 3.4, torque requirement of 0.03 Nm, power consumption of3 W and a thrust force of 0.11 N. While the simulation results turned out to bean output of power number which is about 1.2, torque requirement of 0.013 Nm, apower consumption of 2 W and thrust force of 0.8 N. Similarly, the experimentalresult for RBR S14 was as follows. A power number of 0.53, torque requirement of0.41 Nm, power consumption of 6 W and a thrust force of 4.16 N. The simulationresults turned out to be, a power number of 0.34, torque requirement of 0,40 Nm,a power consumption of 4.14 W and thrust force of 3.61 N. With the help of the calculated power numbers, the power required to rotate theRBR can then be determined. Power number is determined when a fully developedturbulent flow is achieved. For RBRS2, a fully developed turbulent flow is achievedat Re = 2.8·104 and the angular velocity at that Reynolds number is about 830RPM. At that speed, the power is shown to be about 4 W for RBRS2. For RBRS14,a fully developed turbulent flow is achieved at Re = 1.5 · 105 and then the speed atthat Reynols number is about 83 RPM. The power need at that stage is shown tobe about 20 W. / Roterande bäddreaktorer används inom hela processindustrin. De används bådeinom den kemiska industrin och andra industriella sektor såsom, läkemedel och textilindustrin vid avfärgning på grund av biprodukter eller föroreningar. SpinChemAB tillverkar roterande bed reaktorer (RBR) för att utföra kemiska reaktioner mellan vätska och fasta material. Det fasta materialet består av sfäriska partiklar på0,1 mm - 1 mm i diameter som packas mellan två cylindrar i RBRn. Målet med detta projektarbete var att bestämma effekt nummer, effekt som krävsvid det effekt nummer, kravet på vridmoment från motorn samt den axiella kraftensom den roterande bäddreaktorn upplever när ett fullt utvecklat turbulent flöde uppnåtts. Syftet med arbetet var optimera teknologin ur energianvändningssynpunkt, göra den enkel och lättillgänglig för kemiska och industriella processer som ett bidragför hållbar samhällsutveckling. För att kunna uppnå syftet och målet med projekten användes, avancerade beräkningsmetoder i födes mekanik (CFD) i kombinationmed experimentella modeller. Beräkningar gjordes i COMSOL Multiphysics för tvåturbulenta modeller. I de användes roterande maskineriet med en medföljande mesh (moving mesh) för både standard k-ε modellen och SST k-ω modellen. Resultatet jämfördes sedan med de empiriska modellerna. Undersökningarna gjordes för två modeller av RBR. Ena modellen heter RBR S2med relativt små tillstorlek och RBR S14 som är mycket större version. För RBR S2visar den experimentella resultaten ett effekt nummer på 3,4, vridmoment på 0,03Nm, effekt förbrukning på 3 W och en axiellkraft ("thrust force") på 0,11 N. Simuleringsresultatet visar ett effekt nummer på 1,2, vridmoment på 0,013 Nm, effektförbrukning på 2 W och en axiellkraft på 0,8 N. För RBR S14 visade det experimentella resultatet ett effekt nummer på 0,53, vridmoment på 0,41 Nm, effektförbrukning på 6 W och en axiellkraft ("thrust force") på 4,16 N. Simuleringsresultatetvisade att effekt nummer var 0,34, vridmoment på 0,40 Nm, effektförbrukning på4,14 W och en axiellkraft på 3,61 N. Med hjälp av de framräknade effektnummer kan effekten som behövs rotera RBRnbestämmas. Effektnummer bestäms när ett fullt utvecklat turbulent flöde uppnåtts. För RBRS2 uppnås ett fullt utvecklat turbulent flöde vid Re = 2,8·04 och vinkelhastigheten är 830 RPM vid det Reynolds nummer. Effekten som krävs för att drivaRBRn vid det läge är ca 4 W för RBRS2. För RBRS14 uppnås ett fullt utvecklatturbulent flöde vid Re = 1,5·105 och då har vi en hastighet på 83 RPM. Vid denhastighet visas effekten vara ca 20 W.

Page generated in 0.0394 seconds