• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 21
  • 19
  • 14
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 269
  • 269
  • 103
  • 75
  • 67
  • 59
  • 33
  • 29
  • 29
  • 29
  • 29
  • 29
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Characterisation of Glass Fibre Polypropylene and GFPP based Fibre Metal Laminates at high strain rates

Govender, Reuben Ashley 12 1900 (has links)
Fibre reinforced polymers (FRP) are finding increasing use in structures subjected to high rate loading such as blast or impact. Proper design of such structures requires thorough characterisation of the material behaviour over a range of loading rates from quasi-static to impact. This thesis investigated the quasi-static and impact response of Glass Fibre Polypropylene (GFPP) in compression, bending and delamination. The bending and delamination response of Fibre Metal Laminates (FMLs) based on GFPP and aluminium was also investigated at quasi-static and impact rates. High strain rate (5x10^2 to 10^3 /s) compression tests were conducted on GFPP using a compressive Split Hopkinson Pressure Bar (SHPB) and a Direct Impact Hopkinson Pressure Bar (DIHPB), in the through-thickness and in-plane directions. In both loading directions, the peak stress of GFPP increased linearly with the logarithm of strain rate. For in-plane loading, the failure modes were dominated by localised fibre buckling and kink bands, leading to delamination. The through thickness loading produced macroscopic shear and spreading failure modes. However, both of these failure modes are linked to in-ply fibre failures, due to through thickness compression causing transverse tensile strain. Previous studies of similar materials have not explicitly stated the link between through thickness compression and fibre failure associated with transverse tensile strain. A novel test rig was developed for Three Point bend testing at impact rates. The specimen was supported at the outer points on a rigid impacter and accelerated towards a single output Hopkinson Pressure Bar (HPB), which impacted the specimen at its midspan. Previous impact bend test rigs based on HPBs were limited to testing specimens with deflections to failure up to approximately 1mm, whereas the rig implemented herein measured deflections up to approximately 10 mm. This configuration permits the output HPB to be chosen purely on the magnitude of the expected impact force, which resulted in superior force resolution to configurations used in other studies. The HPB Impact Bend rig was used to test GFPP and aluminium-GFPP FML specimens, at impact velocities ranging from 5 to 12 m/s. The flexural strength of GFPP increased with strain rate, while the flexural response of the FML specimens was relatively insensitive to strain rate. v Several candidate delamination test geometries were investigated at quasi-static displacement rates (1 mm/min), and the Single Leg Bend (SLB) test was identified as suitable for adaptation to higher rate testing. Single Leg Bend delamination tests of both GFPP and FML specimens were performed using the HPB Impact Bend rig, at impact velocities of 6 to 8 m=s. The shape of the force displacement response for the high rate testswas markedly different from the quasi-static tests, for both the GFPP and FML specimens. Finite element (FE) simulation of the quasi-static and impact rate SLB tests on GFPP indicated that the difference was probably due to the interaction of flexural vibrations and stress waves in the specimen and the impacter cross member. The experimental results and FE analysis suggest that the delamination fracture toughness of GFPP decreases slightly as strain rate increases. High rate delamination tests on FML specimens resulted in unstable crack growth.
22

Strain rate effects on energy dissipation during hypervelocity penetration of polymeric materials

Bowering, Michael Hunter 14 December 2018 (has links)
Energy dissipation during penetration is an important consideration in materials selection for lightweight armoring to protect against hypervelocity impacts (HVIs). Impact-induced glass transition in polymeric materials has been observed to increase energy dissipation during penetration. Incorporating unconventional armor materials like polymers could improve performance in these types of applications. A series of HVIs was performed, with impact velocities over the range of 2-7 km/s, on samples of ultra-high molecular weight polyethylene and poly(methyl methacrylate). A relationship between back face debris cloud velocity and impact velocity was developed for each material. Damage zone sizes were compared, offering insights into the effects of molecular architecture on stress delocalization and energy dissipation during hypervelocity perforation. Thermal analysis of the two material systems provides quasi-static glass transition temperatures, as well as melting and crystallization temperatures. The apparent failure mechanisms, in conjunction with thermal analysis, were used to explain the relative performance of each material.
23

A mechanistic study of strain rate sensitivity and high rate property of tendon

Clemmer, John Steeneck 07 August 2010 (has links)
The ultrastructural mechanism for strain rate sensitivity of collagenous tissue has not been well studied at the collagen fibril level. The objective is to reveal the mechanistic contribution of the collagen fibril to strain rate sensitivity. Collagen fibrils underwent significantly greater fibril strain relative to global tissue strain at higher strain rates. A better understanding of tendon mechanisms at lower hierarchical levels would help establish a basis for future development of constitutive models and assist in tissue replacement design. High rate mechanical property of tendon was also studied. Tendon was compressed under high strain rate (550 /s) using a polycarbonate split Hopkinson pressure bar (PSHPB). The objectives are to investigate the tissue behavior of porcine tendon at high rates. Tendon’s high rate behavior was compared with brain and liver at both hydrated and dehydrated states to investigate how water content and ultrastructural affect high rate responses of soft tissues.
24

Compact Stress Waveguides in Solid Mechanics

Leonard, Richard Young, III 30 April 2021 (has links)
This work analyzes the design and implementation of waveguides used to measure stress waves in solid mechanics via explicit finite element analysis and experimentation. Many areas of physics use waveguides where control of timing, location, or frequency of waves is imperative to functionality of a system. Split Hopkinson pressure bars (Kolsky bars) traditionally utilize straight waveguides during testing. Prior research produced the first bent wave guide for use in such an application, the coaxially embedded serpentine bar (CESB). Explicit finite element analysis (FEA) provides a modeling approach to understand the effects of pass and joint geometry and boundary conditions on the functionality of solid-mechanic waveguides like the CESB. FEA and experimentation also contrasts the functionality of welded joints and threaded joints. Novel waveguide designs that do not feature tubes are also detailed for use in dynamic mechanical testing and dynamic hardness indentation experiments. These designs feature acoustic lengths up to two orders of magnitude greater than their physical lengths.
25

Rate effects in fine grained soils

Quinn, Turlough January 2013 (has links)
The strain rate dependent behaviour of fine grained soils is an important aspect of geotechnical engineering. During dynamic or rapid events such as earthquakes and rapid pile testing, a fine grained soil will display significantly different behaviour than may be observed over the long life span of a structure. There is currently little understanding of the factors which influence the behaviour of fine grained soils during dynamic events (extremely high strain rates), making their response difficult to predict. This research investigates the behaviour of fine grained soils subjected to a wide range of constant strain rates in monotonic triaxial compression testing. Each test is conducted under drained conditions to observe the behaviour of soils as they transition from a drained response at lower strain rates, through to an undrained or viscous response at higher strain rate tests. Where the response of soils is drained or partially drained, higher strain rate tests measure a decrease in strength. The point of transition from partially drained to undrained behaviour corresponds to the lowest strain rate dependent strength. Further tests at higher strain rates measure consistently greater strength. The strain rate dependence of three fine grained soils is investigated, enabling a comparison of strain rate effects with soil index properties. The influence of initial state on the strain rate dependence of these Kaolin based model soils is also evaluated. The drained to partially drained response of the soils to strain rate increase is controlled by the coefficient of consolidation. Tests at high strain rates show the undrained or viscous strain rate effect on strength is related to liquidity index. Local strain instrumentation allowed comparison of strain rate effects on small strain stiffness. At higher strain rate the soils display increasingly linear behaviour. At non-linear elastic strains, liquidity index appears to control the magnitude of the strain rate effects on stiffness.
26

Effect of strain rate and bone quality on the bending behaviour of whole bone

Wallace, Robert James January 2012 (has links)
Forty ovine femurs were harvested and allocated into four testing groups; Fast-Normal, Fast- Decalcified, Slow-Normal, Slow-Decalcified. Contralateral pairings were used within these groups for closer comparison. Dynamic testing apparatus was designed and built allowing rates of strain similar to road traffic accidents to be investigated. These strain rates were achieved by using a pneumatic actuator to apply the load. Slow rate loading was achieved by testing with a commercially available mechanical testing machine at a rate of strain similar to that created by walking. Bone quality was altered by ultrasonically assisted decalcification in EDTA. Levels of mineral dissolution equivalent to the loss of bone mineral density (BMD) of a 75 year old woman were targeted. Whole bone was used for these experiments to facilitate comparison with real fracture radiographs obtained from NHS database. Fracture patterns and degree of comminution were similar between experimental and patient data. Bone is often analysed as a simple beam (engineers bending theory). This method of stress analysis was compared with a method that recognised the change in cross section over the length of the bone. Accounting for this had a highly significant effect on the calculated flexural modulus (p<0.0005).The length to depth ratio of whole bone indicates that shear forces cannot be ignored. The effect of the contribution from shear force on the deflection was investigated. After accounting for deflections due to shear, calculated normal strains agreed with literature values. Deflection due to shear was found to make a significant contribution to the deflection The effect of storage (freezing) on the mechanical properties at high strain rate was evaluated: no significant differences were found for force and deflection at failure. The main body of testing gave the following results: Normal quality bone, rate compared showed significant differences for Ultimate Stress, Ultimate Strain, Yield Strain, Flexural Modulus and Toughness. Demineralising bone resulted in no statistically significant differences between the loading rates for the Stress at failure. Yield Strain, Ultimate Strain, Flexural Modulus and Toughness did show significant differences. The fast loading tests showed significant differences when comparing quality for Stress at failure but not at Yield. Significant differences were found when comparing toughness. Slow loading tests showed significant differences between bone qualities for Stress at failure in contralateral pairs. No significant differences were found for strain or toughness. These results indicate that bone of normal quality can withstand higher than normal stresses for short durations. This ability is lost in demineralised bone. The high loading rate tests revealed closely matched strains at failure for both bone qualities, lending support to the strain based failure theory for bone at traumatic strain rates.
27

Effects of microstructure on the spall behavior of aluminum-magnesium alloys

Whelchel, Ricky L. 22 May 2014 (has links)
This research focuses on the spall properties of aluminum-magnesium (Al-Mg)alloys.Aluminum alloy 5083 (Al 5083) was used as a model alloy for the work performed in this study. Al-Mg alloys represent a light-weight and corrosion resistant alloy system often used in armor plating. It is desirable to process armor plate material to yield a microstructure that provides maximum resistance to spall failure due to blast and projectile impacts. The blast and impact resistance has often been quantified based on the measurement of the spall strength and the Hugoniot elastic limit (HEL). The spall properties of Al-Mg alloys were measured for four different microstructural states resultant from varying processing conditions. The four microstructures include: (a) textured grain structure from a rolled Al 5083-H116 plate, (b) sub-micron grain structure produced using equi-channel angular pressing (ECAP),(c) equiaxed grain structure, and (d) precipitation hardened microstucture from an Al-9wt.% Mg alloy. The overall results show that grain size is not the most dominant microstructural feature affecting spall strength in aluminum alloys, when the impact conditions are the same. Texture, especially if brittle inclusions align along the grains, appears to have the most dominant effect resulting in decreased spall strength. Furthermore, one-dimensional modeling shows that the inclusion size and distribution is the controlling factor for void formation during spalling. Grain size does affect the decompression rate dependence of each microstructure, whereby smaller grain sizes result in a larger power law exponent for fits of spall strength versus decompression rate. Unlike the spall strength, the HEL shows an increasing trend with decreased grain size, as would be expected from a Hall-Petch type effect, indicating that a smaller grain size is best for penetration resistance. Samples processed using ECAP alone provide the best combination of spall strength and HEL and therefore the most promise for improved blast and penetration resistance of aluminum-magnesium alloy armor plates.
28

Constitutive Behavior of Aluminum Alloy Sheet At High Strain Rates

Smerd, Rafal January 2005 (has links)
In this work, three aluminum sheet alloys, AA5754, AA5182 and AA6111, which are prime candidates for replacing mild steel in automobile structures, are tested in tension at quasi-static and high strain rates. <br /><br /> In order to characterize the constitutive response of AA5754, AA5182 and AA6111 at high strain rates, tensile experiments were carried out at strain rates between 600 s<sup>-1</sup> and 1500 s<sup>-1</sup>, and at temperatures between ambient and 300??C, using a tensile split Hopkinson bar (TSHB) apparatus. As part of this research, the apparatus was modified in order to provide an improved means of gripping the sheet specimens. Quasi-static experiments also were conducted using an Instron machine. <br /><br /> The experimental data was fit to the Johnson-Cook and Zerilli-Armstrong constitutive models for all three alloys. The resulting fits were evaluated by numerically simulating the tensile experiments conducted using a finite element approach.
29

The mechanical response of low to high density Rohacell foams

Poxon, Sara January 2013 (has links)
The main aim of this thesis is to generate a deeper understanding of the mechanical behaviour of cellular materials, specifically for their use in aerospace applications. A closed-cell polymer foam material (Rohacell) of various foam densities was chosen for this investigation, and a comprehensive experimental study was conducted which generated significant findings that hitherto have not been reported in the literature. The research presented in this study revealed the following: The quasistatic response of Rohacell foam displays a compression/tension asymmetry in moduli and strength. In-situ experiments revealed that different macroscopic collapse mechanisms at different foam densities drove this behaviour. Improved experimental methods were developed to characterise the material response at various loading rates. Under compressive loading, as the relative density and loading rate increased, a transition in material behaviour from a ductile to brittle response at very high rates (~5x10^3 s^-1) was found, and tests conducted at different temperatures were used to validate and provide a better understanding of the causes for the observed rate dependency. The compression and tension properties of pre-crushed Rohacell foam loaded in different directions were measured, and with the use of three-point-bend tests it was shown that when the foams’ tension/compression asymmetry, or the changes in stiffness and strength due to pre-crushing (i.e. strain-induced anisotropy), are neglected, this leads to incorrect predictions of the foams’ structural response. Finally, a review of some existing Finite Element foam material models was conducted, and their ability to predict the foam response under complex loading was identified. The new data and understanding generated from this thesis will allow engineers and researchers, who are developing constitutive models for predicting the response of foam materials, specifically in aerospace applications, to account for more aspects of the mechanical behaviours in their Finite Element models.
30

Numerical analyses of steel and aluminum alloy bridge guard fences

伊藤, 義人, Itoh, Yoshito, Usami, K, Kusama, Ryuichi, 貝沼, 重信, Kainuma, Shigenobu 12 1900 (has links)
No description available.

Page generated in 0.0284 seconds