• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 43
  • 26
  • 19
  • 8
  • 4
  • 1
  • Tagged with
  • 391
  • 391
  • 391
  • 120
  • 98
  • 73
  • 56
  • 54
  • 53
  • 53
  • 46
  • 44
  • 43
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring

January 2012 (has links)
abstract: Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focusses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2012
112

Adaptive Methods within a Sequential Bayesian Approach for Structural Health Monitoring

January 2013 (has links)
abstract: Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time computational burden is decreased significantly and the number of possible observation modes can be increased. Using sensor measurements from real experiments, the overall sequential Bayesian estimation approach, with the adaptive capability of varying the state dynamics and observation modes, is demonstrated for tracking crack damage. / Dissertation/Thesis / Ph.D. Electrical Engineering 2013
113

The use of macro fiber composite transducers for ultrasonic guided wave based inspection

Haig, Alexander George January 2013 (has links)
Sound can propagate for long distances with a low loss of intensity in objects whose geometry acts as a guide for the sound waves; a phenomenon that can be utilised for long range testing of structures. The guided sound waves can be used to conduct materials evaluation or to detect flaws, which can be done for a relatively large region of coverage from a relatively small region of access. In particular this technology can be used to inspect or monitor large engineering structures whose structural integrity is critical for safety and the environment, such as wind turbine towers, ship hulls, and pipelines. The use of guided waves for structural inspection is complicated by the existence of many wave modes. In this thesis, the Macro Fiber Composite (MFC) is characterised for its frequency, wavelength, wave mode and direction dependent sensitivity. These devices are flexible, light and thin, and, here have been shown to have wave mode sensitivity characteristics that are favourable for some applications. The MFC is a piezoelectric actuator that can be used to excite and sense in-plane vibrations at a structures surface. The surface area of an MFC is significantly large with respect to typical wavelengths used in ultrasonic guided wave applications, which combined with their in-plane extensional nature gives rise to a significantly wave mode, frequency and direction dependent sensitivity. This can limit their application, but can also potentially be exploited for greater wave mode control. A method for simulating the output from hypothesised transducer behaviour is shown and validated for the MFC. This allows their behaviour to be predicted for new structures. It is shown that their frequency response can depend on the waveguide and can vary with direction, which can lead to wave mode transmission and reception characteristics that may be advantageous for some methods of application and detrimental to others. A novel method of adapting a flexible transducer, such as the MFC, has been developed and its characterisation is given. It is shown that through the use of a decoupling membrane, an MFC can be caused to have very different wave mode sensitivity characteristics whilst retaining their light and flexible nature. These altered characteristics are favourable for applications where shear horizontal wave modes are required. Both fully coupled MFC transducers and the adapted MFC transducers are considered for application to pipeline testing. Fully coupled MFC transducers are used for inspection using longitudinal waves, whilst the adapted MFC transducers are used with torsional waves. These arrays are compared to a current commercial tool.
114

A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors

Kong, Xiangxiong, Li, Jian, Collins, William, Bennett, Caroline, Laflamme, Simon, Jo, Hongki 12 April 2017 (has links)
A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is capable to monitor strain changes over a large structural surface and undergo large deformations under cracking. Previous tests verified that the SEC can detect and localize fatigue cracks under low-cycle fatigue loading. In this paper, we further investigate the SEC's capability for monitoring high-cycle fatigue cracks, which are commonly seen in steel bridges. The peak-to-peak amplitude (pk-pk amplitude) of the SEC measurement is proposed as an indicator of crack growth. This technique is is robust and insensitive to long-term capacitance drift. To overcome the difficulty of identifying the pk-pk amplitude in time series due to high signal-to-noise ratio, a signal processing method is established. This method converts the measured SEC capacitance and applied load to power spectral densities (PSD) in the frequency domain, such that the pk-pk amplitudes of the measurements can be accurately extracted. Finally, the performance of this method is validated using a fatigue test of a compact steel specimen equipped with a SEC. Results show that the crack growth under high-cycle fatigue loading can be successfully monitored using the proposed signal processing method.
115

Structural Data Acquisition Using Sensor Network

Chidambar Munavalli, Sainath 16 April 2013 (has links)
The development cost of any civil infrastructure is very high; during its life span, the civil structure undergoes a lot of physical loads and environmental effects which damage the structure. Failing to identify this damage at an early stage may result in severe property loss and may become a potential threat to people and the environment. Thus, there is a need to develop effective damage detection techniques to ensure the safety and integrity of the structure. One of the Structural Health Monitoring methods to evaluate a structure is by using statistical analysis. In this study, a civil structure measuring 8 feet in length, 3 feet in diameter, embedded with thermocouple sensors at 4 different levels is analyzed under controlled and variable conditions. With the help of statistical analysis, possible damage to the structure was analyzed. The analysis could detect the structural defects at various levels of the structure.
116

Monitoring 3D vibrations in structures using high resolution blurred imagery

McCarthy, David M. J. January 2016 (has links)
This thesis describes the development of a measurement system for monitoring dynamic tests of civil engineering structures using long exposure motion blurred images, named LEMBI monitoring. Photogrammetry has in the past been used to monitor the static properties of laboratory samples and full-scale structures using multiple image sensors. Detecting vibrations during dynamic structural tests conventionally depends on high-speed cameras, often resulting in lower image resolutions and reduced accuracy. To overcome this limitation, the novel and radically different approach presented in this thesis has been established to take measurements from blurred images in long-exposure photos. The motion of the structure is captured in an individual motion-blurred image, alleviating the dependence on imaging speed. A bespoke algorithm is devised to determine the motion amplitude and direction of each measurement point. Utilising photogrammetric techniques, a model structure s motion with respect to different excitations is captured and its vibration envelope recreated in 3D, using the methodology developed in this thesis. The approach is tested and used to identify changes in the model s vibration response, which in turn can be related to the presence of damage or any other structural modification. The approach is also demonstrated by recording the vibration envelope of larger case studies in 2D, which includes a full-scale bridge structure, confirming the relevance of the proposed measurement approach to real civil engineering case studies. This thesis then assesses the accuracy of the measurement approach in controlled motion tests. Considerations in the design of a survey using the LEMBI approach are discussed and limitations are described. The implications of the newly developed monitoring approach to structural testing are reviewed.
117

Structural Health Monitoring Using Index Based Reasoning For Unmanned Aerial Vehicles

Li, Ming 17 June 2010 (has links)
Unmanned Aerial Vehicles (UAVs) may develop cracks, erosion, delamination or other damages due to aging, fatigue or extreme loads. Identifying these damages is critical for the safe and reliable operation of the systems. Structural Health Monitoring (SHM) is capable of determining the conditions of systems automatically and continually through processing and interpreting the data collected from a network of sensors embedded into the systems. With the desired awareness of the systems’ health conditions, SHM can greatly reduce operational cost and speed up maintenance processes. The purpose of this study is to develop an effective, low-cost, flexible and fault tolerant structural health monitoring system. The proposed Index Based Reasoning (IBR) system started as a simple look-up-table based diagnostic system. Later, Fast Fourier Transformation analysis and neural network diagnosis with self-learning capabilities were added. The current version is capable of classifying different health conditions with the learned characteristic patterns, after training with the sensory data acquired from the operating system under different status. The proposed IBR systems are hierarchy and distributed networks deployed into systems to monitor their health conditions. Each IBR node processes the sensory data to extract the features of the signal. Classifying tools are then used to evaluate the local conditions with health index (HI) values. The HI values will be carried to other IBR nodes in the next level of the structured network. The overall health condition of the system can be obtained by evaluating all the local health conditions. The performance of IBR systems has been evaluated by both simulation and experimental studies. The IBR system has been proven successful on simulated cases of a turbojet engine, a high displacement actuator, and a quad rotor helicopter. For its application on experimental data of a four rotor helicopter, IBR also performed acceptably accurate. The proposed IBR system is a perfect fit for the low-cost UAVs to be the onboard structural health management system. It can also be a backup system for aircraft and advanced Space Utility Vehicles.
118

Structural Damage Assessment Using Artificial Neural Networks and Artificial Immune Systems

Shi, Arthur Q.X. 01 December 2015 (has links)
Structural health monitoring (SHM) systems have been technologically advancing over the past few years. Improvements in fabrication and microelectronics allow the development of highly sophisticated sensor arrays, capable of detecting and transmitting an unprecedented amount of data. As the complexity of the hardware increases, research has been performed in developing the means to best utilize and effectively process the data. Algorithms from other computational fields are being introduced for the first time into SHM systems. Among them, the artificial neural network (ANN) and artificial immune systems (AIS) show great potential. In this thesis, features are extracted out of the acceleration data with the use of discrete wavelet transforms (DWT)s first. The DWT coefficients are used to calculate energy ratios, which are then classified using a neural network and an AIS algorithm known as negative selection (NS). The effectiveness of both methods are validated using simulated acceleration data of a four story structure exhibiting various damage states via computer simulation.
119

On the Use of Metaheuristic Algorithms for Solving Conductivity-to-Mechanics Inverse Problems in Structural Health Monitoring of Self-Sensing Composites

Hashim Hassan (10676238) 07 May 2021 (has links)
<div>Structural health monitoring (SHM) has immense potential to improve the safety of aerospace, mechanical, and civil structures because it allows for continuous, real-time damage prognostication. However, conventional SHM methodologies are limited by factors such as the need for extensive external sensor arrays, inadequate sensitivity to small-sized damage, and poor spatial damage localization. As such, widespread implementation of SHM in engineering structures has been severely restricted. These limitations can be overcome through the use of multi-functional materials with intrinsic self-sensing capabilities. In this area, composite materials with nanofiller-modified polymer matrices have received considerable research interest. The electrical conductivity of these materials is affected by mechanical stimuli such as strain and damage. This is known as the piezoresistive effect and it has been leveraged extensively for SHM in self-sensing materials. However, prevailing conductivity-based SHM modalities suffer from two critical limitations. The first limitation is that the mechanical state of the structure must be indirectly inferred from conductivity changes. Since conductivity is not a structurally relevant property, it would be much more beneficial to know the displacements, strains, and stresses as these can be used to predict the onset of damage and failure. The second limitation is that the precise shape and size of damage cannot be accurately determined from conductivity changes. From a SHM point of view, knowing the precise shape and size of damage would greatly aid in-service inspection and nondestructive evaluation (NDE) of safety-critical structures. The underlying cause of these limitations is that recovering precise mechanics from conductivity presents an under determined and multi-modal inverse problem. Therefore, commonly used inversion schemes such as gradient-based optimization methods fail to produce physically meaningful solutions. Instead, metaheuristic search algorithms must be used in conjunction with physics-based damage models and realistic constraints on the solution search space. To that end, the overarching goal of this research is to address the limitations of conductivity-based SHM by developing metaheuristic algorithm-enabled methodologies for recovering precise mechanics from conductivity changes in self-sensing composites.</div><div><div><br></div><div>Three major scholarly contributions are made in this thesis. First, a piezoresistive inversion methodology is developed for recovering displacements, strains, and stresses in an elastically deformed self-sensing composite based on observed conductivity changes. For this, a genetic algorithm (GA) is integrated with an analytical piezoresistivity model and physics-based constraints on the search space. Using a simple stress based failure criterion, it is demonstrated that this approach can be used to accurately predict material failure. Second, the feasibility of using other widely used metaheuristic algorithms for piezoresistive inversion is explored. Specifically, simulated annealing (SA) and particle swarm optimization (PSO) are used and their performances are compared to the performance of the GA. It is concluded that while SA and PSO can certainly be used to solve the piezoresistive inversion problem, the GA is the best algorithm based on solution accuracy, consistency, and efficiency. Third, a novel methodology is developed for precisely determining damage shape and size from observed conductivity changes in self-sensing composites. For this, a GA is integrated with physics-based geometric models for damage and suitable constraints on the search space. By considering two specific damage modes —through-holes and delaminations —it is shown that this method can be used to precisely reconstruct the shape and size of damage. </div><div><br></div><div>In achieving these goals, this thesis advances the state of the art by addressing critical limitations of conductivity-based SHM. The methodologies developed herein can enable unprecedented NDE capabilities by providing real-time information about the precise mechanical state (displacements, strains, and stresses) and damage shape in self-sensing composites. This has incredible potential to improve the safety of structures in a myriad of engineering venues.</div></div>
120

Structural Damage Detection Using Instantaneous Frequency and Stiffness Degradation Method

Jha, Raju 01 June 2021 (has links)
Research in damage detection and structural health monitoring in engineering systems during their service life has received increasing attention because of its importance and benefits in maintenance and rehabilitation of structure. Though the concept of vibration-based damage detection has been in existence for decades, and several procedures have been proposed to date, its practical applications remain limited, considering the increased utilization of sensors to measure structural response at multiple points. In this thesis, use of acceleration response of the structure as a method of global damage detection is explored using instantaneous frequency and stiffness degradation methods. Instantaneous frequency was estimated using continuous wavelet transform of measured acceleration response of the structure subjected to ground motion. Complex Morlet Wavelet was used in the time-frequency analysis due to its ability to provide sufficient resolution in both time and frequency domains. This ability is important in analyzing nonstationary signals like earthquake response of structure containing sharp changes in the signal. The second method, called the stiffness degradation analysis, is based on estimating the time-varying stiffness. This estimation is done by fitting a moving least-square line to the force-displacement loop for the duration of the ground motion.A four-story shear building is used as the model structure for numerical analysis. Two damage scenarios are considered: single damage instant and multiple damage instants. Both scenarios assume that the damage occurs at a single location. In the numerical simulations, damage was modeled as a reduction in the stiffness of the first floor, and accelerations were computed at floor levels using state-space model. The two methods were compared in terms of their damage detection ability and it was shown that both methods can be used in detecting damage and the time at which the damage occurs. These methods can later be extended by simultaneously considering the correlations of responses at all floor levels. This extension may enable locating the damage and quantifying the severity of the damage.

Page generated in 0.0648 seconds