1 |
On flux vacua, SU(n)-structures and generalised complex geometry / Sur des vides à flux, des SU(n)-structures et de la géométrie complexe généraliséePrins, Daniël 25 September 2015 (has links)
Pour connecter la théorie des cordes à la physique observable, il est essentiel de comprendre des vides supersymmétriques à flux non triviaux. Dans cette thèse, ils sont étudiés en deux cadres mathématiques : les SU(n)-structures et la géométrie complexe généralisée. Les variétés équipées de SU(n)-structures sont des généralisations de variétés de Calabi-Yau. La géométrie complexe généralisée est un cadre géométrique qui regroupe les géométries complexe et symplectique. On donne des classes de vide à flux de supergravité de type II et de théorie-M sur des variétés équipées de SU(4)-structures. Des vides explicites sont donnés sur l'espace de Stenzel, un Calabi-Yau non-compact. Ensuite, sur cette variété, des familles de SU(4)-structures sont construites. À l'aide de celles-ci, on trouve des vides à flux sur des variétés non-symplectiques. Il est démontré que les conditions permettant une supersymétrie à d = 2, N = (2,0) de type IIB peut être reformulées dans le langage de la géométrie complexe généralisée, partiellement interprétables en termes de conditions d'intégrabilité de structures presque complexes généralisées. Enfin, la théorie de type II euclidienne est examinée sur des variétés équipées de SU(5)-structures, donnant des équations généralisées qui sont nécessaires mais pas suffisantes pour satisfaire les équations de supersymétrie. Des classes de solutions explicites sont également donnés / Understanding supersymmetric flux vacua is essential in order to connect string theory to observable physics. In this thesis, flux vacua are studied by making use of two mathematical frameworks: SU(n)-structures and generalised complex geometry. Manifolds with $SU(n)$ structure are generalisations of Calabi-Yau manifolds. Generalised complex geometry is a geometrical framework that simultaneously generalises complex and symplectic geometry. Classes of flux vacua of type II supergravity and M-theory are given on manifolds with SU(4) structure. The N = (1,1) type IIA vacua uplift to N=1 M-theory vacua, with four-flux that need not be (2,2) and primitive. Explicit vacua are given on Stenzel space, a non-compact Calabi Yau. These are then generalised by constructing families of non-CY SU(4)-structures to find vacua on non-symplectic SU(4)-deformed Stenzel spaces. It is shown that the supersymmetry conditions for N = (2,0) type IIB can be rephrased in the language of generalised complex geometry, partially in terms of integrability conditions of generalised almost complex structures. This rephrasing for d=2 goes beyond the calibration equations, in contrast to d=4,6 where the calibration equations are equivalent to supersymmetry. Finally, Euclidean type II theory is examined on SU(5)-structure manifolds, where generalised equations are found which are necessary but not sufficient to satisfy the supersymmetry equations. Explicit classes of solutions are provided here as well. Contact with Lorentzian physics can be made by uplifting such solutions to d=1, N = 1 M-theory
|
2 |
Homogeneous Einstein Metrics on SU(n) Manifolds, Hoop Conjecture for Black Rings, and Ergoregions in Magnetised Black Hole SpacetimesMujtaba, Abid Hasan 02 October 2013 (has links)
This Dissertation covers three aspects of General Relativity: inequivalent Einstein metrics on Lie Group Manifolds, proving the Hoop Conjecture for Black Rings, and investigating ergoregions in magnetised black hole spacetimes. A number of analytical and numerical techniques are employed to that end.
It is known that every compact simple Lie Group admits a bi-invariant homogeneous Einstein metric. We use two ansatze to probe the existence of additional inequivalent Einstein metrics on the Lie Group SU (n). We provide an explicit construction of 2k + 1 and 2k inequivalent Einstein metrics on SU (2k) and SU (2k + 1) respectively.
We prove the Hoop Conjecture for neutral and charged, singly and doubly rotating black rings. This allows one to determine whether a rotating mass distribution has an event horizon, that it is in fact a black ring.
We investigate ergoregions in magnetised black hole spacetimes. We show that, in general, rotating charged black holes (Kerr-Newman) immersed in an external magnetic field have ergoregions that extend to infinity near the central axis unless we restrict the charge to q = amB and keep B below a maximal value. Additionally, we show that as B is increased from zero the ergoregion adjacent to the event horizon shrinks, vanishing altogether at a critical value, before reappearing and growing until it is no longer bounded as B becomes greater than the maximal value.
|
3 |
DECONFINED QUANTUM CRITICALITY IN 2D SU(N) MAGNETS WITH ANISOTROPYD'Emidio, Jonathan 01 January 2017 (has links)
In this thesis I will outline various quantum phase transitions in 2D models of magnets that are amenable to simulation with quantum Monte Carlo techniques. The key player in this work is the theory of deconfined criticality, which generically allows for zero temperature quantum phase transitions between phases that break distinct global symmetries. I will describe models with different symmetries including SU(N), SO(N), and "easy-plane" SU(N) and I will demonstrate how the presence or absence of continuous transitions in these models fits together with the theory of deconfined criticality.
|
Page generated in 0.0274 seconds