• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stability, LES, and Resolvent Analysis of Thermally Non-uniform Supersonic Jet Noise

Chauhan, Monika 16 November 2021 (has links)
For decades noise-induced hearing loss has been a concern of the Department of Defense (DoD). My research investigates noise generation and dispersion in supersonic jets and focuses on the fluid-dynamic regime typical of high-performance turbojet and turbofan engines. The goal of my research is to understand how dispersion and propagation of wavepackets can be modified by noise reduction strategies based on secondary injections of fluid with a different temperature from the main jet. The research is organized into three studies that focus on instability, large eddy simulations, and resolvent modes. The first study is a computational investigation of the role of thermal non-uniformity on the development of instability modes in the shear-layer of a supersonic $M= 1.5$, $Re=850,000$ jet. Cold fluid is injected at the axis of a heated jet to introduce radial non-uniformity and control the spatial development of the shear layer. The mean flow is analyzed with an efficient 2D and 3D Reynolds-averaged Navier-Stokes (RANS) approach using the SU2 code platform for 3 different cases -baseline, centered, and offset injection. Different turbulence models are tested and compared with the experiments. The coherent perturbation is analyzed using linear parallel and parabolized stability equations (PSEs). The second study investigates novel formulations of large eddy simulation models using an arbitrary high order discontinuous Galerkin scheme. The LES analysis focuses on both numerical issues (such as convergence against the polynomial order of the mesh), modeling issues (such as the choice of subgrid model), and underlying physics (such as vortex stretching and noise generation). Wall models are used to capture the viscous sublayer at the nozzle. The Ffowcs Williams-Hawkings (FW-H) method is used for far-field noise predictions for all cases. Three-dimensionality is studied to investigate how injection in the shear layer acts to create a rotational inviscid core and affects the mixing of the cold fluid and noise dispersion. The third study extends the (first) instability study by considering (global) resolvent modes. Such optimally forced modes of the turbulent mean flow field will identify the turbulent coherent structures (wavepackets) for different turbulence models at $M=1.5$. The LES simulations performed in the second study will be used to extract the mean flow and the dynamic modes for comparison. My research plan is to perform the resolvent analysis of the axisymmetric mean flow fields for the thermally activated case (i.e., the centered injection) and compare it to the baseline jet case. Different turbulence models will be investigated to determine the correct alignment of dynamic and resolvent modes. Finally, I will consider the three-dimensional, non-axisymmetric mean flow created by offset injection described in the second study, which requires evaluating the convolution products of resolvent modes and base flow. Such three-dimensional resolvent compressible modes have never been identified in the context of supersonic jets. / Doctor of Philosophy / For decades noise-induced hearing loss has been a concern of the Department of Defense (DoD). Research in this area is critical to US national security and valued by both the aircraft industry and government. The noise generated during take-off and landing is hazardous to the crew personnel who work around this vicinity. A reduction of noise can significantly decrease medical expenditure and allow the aircraft industry to meet the stringent community noise requirements. Among the various techniques of noise reduction analyzed over the years, thermal non-uniformity stands out for its simple implementation and cost-effectiveness, especially in after-burner turbojets. Thermal non-uniformity with a cold secondary stream introduces low-velocity fluid in a supersonic jet by locally increasing the density while matching the mass flow rate. Changes to the velocity profile are localized; different regions of the jet emit sound at different frequencies and radiation angles, thus the link between injection location and noise control is not well understood. Using different computational tools this research investigates the link connecting thermal non-uniformity, turbulent production, and sound generation. Injection at different radial locations affects the two mechanisms of sound radiation in different ways. The first mechanism, the Kelvin Helmholtz instability, can be studied as an eigenvalue problem that represents the spatial growth of normal modes. De-coherence of these modal fluctuations can be obtained by injecting secondary fluid directly into the shear layer. This injection mode is called offset injection. The present research shows that the thickening of the shear layer due to low-velocity fluid delays the formation of Kelvin-Helmholtz modes in the offset case. Thus, the outskirts of the jet produce pressure fluctuations with a lower spectral energy density. The second mechanism, the Orr instability, can be analyzed as non-modal growth of acoustic perturbation forced by the breakdown of the core of the jet. LES and stability analysis shows that centered injection is highly effective in reducing the Orr radiation. Resolvent modes explain that the rationale is the delay and reduction of a secondary resonant peak between spatial eddies and forcing caused by changes in the mean profile responsive to secondary injection. Our analysis also explains why the offset injection is more effective at a low polar angle, while centered injection reduces acoustic radiation towards high polar angles. Parametric studies of different injection strategies, i.e., location and number of injection ports are performed to demonstrate the best strategy for noise level reductions.
2

CFD analysis of a glider aircraft : Using different RANS solvers and introducing improvements in the design

Perez Sancha, David January 2019 (has links)
In this study, Computational Fluid Dynamics (CFD) simulations have been carried out in order to investigate and improve the performance of the Standard Cirrus glider, using different Navier-Stokes methods and solving the equations for the steady flow. The work has been divided in two parts: First, a study is performed to test the quality of the transition model (Gamma-ReTheta). The two dimensional results of the glider´s airfoil are compared against the results from panel’s methods and the open-source CFD codes: SU2 and OpenFoam. In addition, three dimensional glider´s models are simulated using the transition model with the purpose of creating a validated reference model of the glider’s performance in steady level flight. The simulations are carried out in two dimensions for the outer wing airfoil for a 1.5 e+06 Reynolds number and in three dimensions for the Wing & Fuselage model and Tail & Fuselage model under a range of velocities. Both simulations are validated against experimental data. In the second part of the study, the validated model is used to developed possible improvements in the glider´s external geometry that could produce possible benefits in the performance and handling qualities of the glider.
3

Adjoint Design Optimization for Boundary Layer Ingesting Inlet Guide Vanes with Distorted Inlet Profiles in SU2

Baig, Aman uz zaman January 2020 (has links)
No description available.
4

Suites Régulières d'Impulsions Radio-Fréquence en Résonance Magnétique. Application à l'IRM.

Le Roux, Patrick 17 November 2006 (has links) (PDF)
Des séquences d'impulsions radiofréquence régulièrement espacées telles que rencontrées en Résonance Magnétique Nucléaire peuvent être abordées par des algorithmes simples de type polynomial (transformée en Z). Une simplification supplémentaire est apportée par l'utilisation de spineurs pour caractériser les rotations. Une première application de la combinaison de ces deux outils est un algorithme de type effeuillage permettant la synthèse d'impulsions radiofréquence sélectives continues. Cet algorithme proposé originellement par l'auteur, a été utilisé depuis plusieurs années en IRM car permettant de s'affranchir facilement de la non linéarité des équations de Bloch. En plus d'une présentation nouvelle de cet algorithme, quelques détails d'implémentation non publiés et quelques compléments théoriques et conditions d'application sont donnés. Une rapide comparaison critique avec les algorithmes de type IST (Inverse Scattering Transform) est donnée.<br />On utilise ensuite les mêmes outils pour donner un modèle simplifié des séquences CPMG (Carr Purcell Meiboom Gill) et SSFP (Steady State Free Precession) . Pour cela on considère la rotation d'écho à écho et on explique la stabilisation naturelle des signaux par la dispersion de phase. Une caractérisation simplifiée mais d'usage assez large des processus de relaxation est obtenue. Un lien entre un algorithme polynomial de stabilisation des signaux de la séquence CPMG, et une version discrétisée du principe adiabatique est proposé. Ce principe d'adiabatisme un peu élargi est appliqué à la stabilisation des séquences SSFP .<br /> Enfin un dernier chapitre aborde une séquence non-CPMG, basée sur une modulation quadratique de la phase du train d'impulsions, qui permet de s'affranchir de la sensibilité à la phase initiale de la séquence CPMG. Il est montré qu'une modulation quadratique étant équivalente après un changement de repère à un système stationnaire, il suffit d'amener l'état du système dans un sous-espace de vecteurs propres bien choisis pour obtenir un équilibre dynamique qui, pour certaines valeurs du paramètre caractérisant la modulation quadratique, donne des signaux de même amplitude quelles que soient les conditions initiales. La sensibilité à la phase initiale de l'aimantation est ainsi annulée. <br />Cette séquence est illustrée par une application clinique à l'imagerie de diffusion, pour laquelle le moindre mouvement du patient entraîne une variation incontrôlée de la phase de l'aimantation initiale.<br />Dans la conclusion de la thèse les limitations des solutions proposées au long des chapitres sont mentionnées et quelques pistes possibles pour tenter de résoudre les problèmes restés ouverts sont proposées.
5

Topics In Effective Field Theories for the Strong Interaction

Thapaliya, Arbin 23 September 2016 (has links)
No description available.
6

Numerical Study of Shock-Dominated Flow Control in Supersonic Inlets

Davis Wagner (17565198) 07 December 2023 (has links)
<p dir="ltr">This thesis concentrates on the improvement of the quality of shock-dominated flows in supersonic inlets by controlling shock wave / boundary layer interactions (SWBLIs). SWBLI flow control has been a major issue relevant to scramjet-associated endeavors for many years. The ultimate goal of this study is to numerically investigate SWBLI flow control through the application of steady-state thermal sources --- which were defined to replicate the Joule heating effect produced by Quasi-DC electric discharges --- and compare the results with data obtained from previous experiments.</p><p dir="ltr">Numerical solutions were obtained using both a three-dimensional, unsteady Reynolds-averaged Navier-Stokes (RANS) solver with a Spalart-Allmaras (SA) Detached Eddy Simulation (DES) turbulence modeling method and also a simple three-dimensional, compressible RANS solver with a SA turbulence model. Computations employed an ideal gas thermodynamic model. The numerical code is Stanford University Unstructured (SU2), an open-source, unstructured grid, computational fluid dynamics code. The SU2 code was modified to include volumetric thermal source terms to represent the Joule heating effect of electric current flowing through the gas. The computational domain, source term configuration, and flow conditions were defined in accordance with experiments carried out at the University of Notre Dame. Mach 2 flow enters the three-dimensional test domain with a stagnation pressure of 1.7 bar. The test domain is contained by four isothermal side walls maintained at room temperature, as well as an inlet and outlet. A shock wave (SW) generator, a symmetric 10 degree wedge, is positioned on the upper surface of the test domain. The overall length of the test sections is 910 mm and inlet length of the computational domain is increased prior to the location of shock wave generator in order to allow for adequate boundary layer growth. Volumetric heating source terms were positioned on the lower surface of the test domain in the reflected SW region.</p><p dir="ltr">Experimental results show that the thermal sources create a new shock train within the duct and do not initiate significant additional pressure losses. What remains to be explored is the overall characterization of the 3D flow features and dynamics of the thermally induced SW and the effect of gas heating on total pressure losses in the test section.</p><p dir="ltr">Numerical solutions validate what is observed experimentally, and offer the ability to gather more temporally and spatially-resolved measurements to better understand and characterize shock-dominated flow control in a supersonic inlet or duct. Although thermally driven SWBLI flow control requires additional research, this study alleviates the dependency on experimentally driven data and adds insight into the nature of the complex unsteady, three-dimensional flowfield.</p>

Page generated in 0.0303 seconds