• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 469
  • 142
  • 112
  • 38
  • 24
  • 23
  • 21
  • 8
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1038
  • 329
  • 253
  • 248
  • 167
  • 137
  • 129
  • 129
  • 117
  • 113
  • 111
  • 107
  • 102
  • 96
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
631

Studies of the Ferromagnetic Superconductors URhGe and UCoGe

Williams, Travis J. 09 1900 (has links)
<p>This thesis comprises studies on two ferromagnetic superconductors, URhGe (Tcurie=9.SK and Tsc=2S0mK) and UCoGe (Tcurie=2.SK and Tsc=800mK). These properties are interesting because the current theory to explain superconductivity predicts that ferromagnetism should destroy superconductivity. Not only is that not true in these materials, but ferromagnetism and superconductivity are thought to arise from a common mechanism. The studies conducted on these materials arise from that possibility, in an attempt to understand the unconventional nature of these materials.<br />Original work is contained in chapters 4, Sand 6. All of this work is currently not published in sources other than this thesis. <br /> Chapter 1 will give an introduction to these materials, and the work that has been done on them by other groups, and work done on related materials. <br /> Chapter 2 will give details of the various experimental methods used in measuring the structure and properties of the materials studied. This work was conducted by the author at McMaster University, with the assistance of individuals from the Brockhouse Institute for Materials Research, and the Center for Electron Microscopy at McMaster University.<br /> Chapter 3 will provide an introduction to the technique of muon Spin Resonance/Relaxation (μSR). This work was done at the TRIUMF facility in Vancouver, British Columbia, with the assistance of several TRIUMF staff. The data was collected by the author, and other members of Dr. Luke's research group as well as collaborators from TRlUMF and from Columbia University. <br /> Chapter 4 will present the measurements made on UCoGe, while Chapter 5 presents the measurements of URhGe. Details of the crystal growth and structure characterization measurements are included in these chapters, along with resistivity, bulk magnetization and μSR measurements. <br /> Both zero- field (ZF) and transverse field (TF) μSR has been performed. This work focuses on studying the magnetic moment size, and the magnetic volume fraction around the ferromagnetic transition, and to temperatures as low as 20mK. Consideration is also given to the magnetic and superconducting properties in the low-temperature region. <br /> In the Introduction, URhGe is presented first, followed by UCoGe, since this was the order in which they were discovered. The results obtained from UCoGe are presented first, since work on that compound was started before the work on URhGe. <br /> Chapter 6 focuses on the conclusions drawn from this work, comparing the measurements of both materials.</p> / Master of Science (MS)
632

ELECTRON TUNNELING STUDIES OF MATERIALS FOR SUPERCONDUCTING RADIO FREQUENCY APPLICATIONS

Lechner, Eric January 2019 (has links)
Radio frequency (RF) cavities are the foundational infrastructure which facilitates much of the fundamental research conducted in high energy particle physics. These RF cavities utilize their unique shape to produce resonant electromagnetic fields used to accelerate charged particles. Beside their core role in fundamental physics research, RF cavities have found application in other disciplines including material science, chemistry and biology which take advantage of their unique light sources. Industry has been keen on taking advantage of accelerator technology for a multitude of applications. Particle accelerators like the one found at Jefferson Lab’s Continuous Electron Beam Accelerator Facility must produce stable beams of high energy particles which is an incredibly costly endeavor to pursue. With the gargantuan size of these facilities, the cost of high-quality beam production is a matter of great importance. The quest to find highly efficient RF cavities has resulted in the widespread use of superconducting radio frequency (SRF) cavities which are the most efficient resonators that exploit a superconductor’s incredibly low AC surface resistance. While metals like Cu are up to the demanding job of RF cavity particle acceleration, their efficiency at transferring RF power to the particle beam is low when they are compared with SRF Nb cavities. Nb is the standard material for all SRF cavity technology particularly for its reproducibly low surface resistance, comparatively high transition temperature and thermodynamic critical field. Using superconducting Nb is not without its drawbacks. Keeping hundreds of Nb cavities in their superconducting state under extreme RF conditions is quite a daunting task. It requires the normal state not nucleate during operation. This is achieved by producing high-quality cavities with as few defects and impurities as possible while also keeping the cavities at low temperature, usually 2K. Again, due to the sheer scale of the facilities, hundred million-dollar cryogenic plants are required to handle the heat loads during SRF cavity operation. This means even small increases in maximum accelerating gradients or decrease in cavity surface resistance results in a sizably reduced operation cost. Considerable effort has been put forth to increase the efficiency of Nb cavities toward and even beyond the theoretical maximum accelerating gradients and quality factor for a clean superconductor. Recently, a new method to produce high quality factor cavities has emerged that involves nitrogen doping the cavity. The mechanism by which N doping causes the improvement is still not well understood, but the experimental research described in this dissertation shines some light into the mechanisms behind such a drastic improvement. These insights are universal for all superconductors and may prove useful for SRF cavities beyond Nb. With Nb approaching its fundamental limits, new materials are being proposed to increase the performance of future SRF cavities which MgB2 finds itself among. MgB2 is a two-band superconductor that possesses many properties that are very attractive for the next generation of SRF cavities. One of the most important properties is MgB2’s comparatively large critical temperature which in part predicts it will have a lower surface resistance than Nb at higher operating temperatures. Such behavior of MgB2 may unlock the possibility of using cryocoolers instead of costly liquid helium plants for large scale industrial use. This dissertation starts with an introduction to superconductivity, its theory, and application to SRF cavities as well as the open questions that can be addressed in Nb and the next generation of SRF materials. A description of the experimental techniques of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy is presented. Our experimental investigation into Nb SRF cavity cutouts starts with a discussion of the material’s limitations for SRF applications with an emphasis on the proximity effect which arises at the surface of this material due to its myriad of naturally forming oxides. The results of our scanning tunneling microscopy measurements for typically prepared Nb and nitrogen doped Nb follows and comparisons are made which show that the surface oxides are fundamentally different between these samples likely resulting in the profound enhancement of the cavity’s quality factor. Experimental investigation into the native oxide of hot spot nitrogen doped Nb shows a degraded oxide and superconducting properties as compared with the cold spot. The dissertation continues with a brief introduction to MgB2, followed by our scanning tunneling and electron tunneling insights into MgB2. The dissertation is concluded with a summary of our investigations and broader impact of our research on the SRF community. / Physics
633

GROWTH AND STUDY OF MAGNESIUM DIBORIDE ULTRATHIN FILMS FOR THz SENSOR APPLICATION

Acharya, Narendra January 2017 (has links)
Thanks to high Tc of 40 K, high Jc of &gt; 10^7 A.cm^-2, and no weak link behavior across the grain boundary in MgB2 material. This highest Tc among all conventional BCS superconductors, and better material properties of MgB2 compared to high Tc cuprate superconductors makes this material attractive for many applications including, but not limited to, power cables, Josephson junction based electronic devices, SRF cavities, THz sensors and single photon counters. Ultrathin superconducting films are a key element in various detectors utilized in remote sensing over a large part of the entire electromagnetic spectrum. The superconducting hot electron bolometer (HEB) mixer is a crucial detector for high-resolution spectroscopy at THz frequencies. The state-of-the-art NbN phonon-cooled HEB mixers have a relatively narrow (IF) bandwidth ~ 3- 4 GHz as a direct result of the poor acoustic transparency of the film-substrate interface and low sound velocity in NbN reducing the phonon escape time in the film. Alternatively, MgB2 displays a very short τe-ph ~ ps. The phonon escape time is also short due to the high sound velocity in the material (~ 7 Km.s^-2) thus giving rise to a broader IF bandwidth. Also, smaller magnetic penetration depth (λ ≈ 40 nm) of MgB2 makes material of choices for single photon detector application. The response time of an SNSPD is proportional to the square of its magnetic penetration depth λ. Therefore, MgB2 may potentially operate 10-fold faster than the NbN (λ =200 nm) based SNSPD. In this work, I present my effort to fabricate high quality ultrathin superconducting MgB2 films on 6H-SiC (0001) substrates, and study their superconducting and electronic properties. C- epitaxial 10 nm showed Tc of above 36 K, while residual resistivity of up to 26 μΩ.cm was achieved. Critical currents of more than 6 × 10^6 A · cm^−2 at 20 K have been measured for the films with thicknesses iv ranging from 10 to 100 nm. Fishtail structures have been observed in the magnetic field dependence of the critical current density for the thinnest of these films, indicating the presence of defects, which act as vortex pinning centers. From the magnetic field dependence, an average distance between adjacent pinning centers of 35 nm has been obtained for the thinnest films. Ultrathin film as thin as 1.8 nm (6 unit cells) can be achieved by Hybrid Physical-Chemical Vapor Deposition (HPCVD) followed by low angle Ar ion milling. These post processed films exhibit better superconducting properties compared to directly grown films. The 1.8 nm, showed Tc &gt; 28 K and Jc &gt; 10^6 A/cm^2 4 K. The surface roughness of the films was significantly improved and the suppression of Tc from the bulk value is much slower in milled films than in as-grown films. These results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit. Finally, I measured the upper critical field of MgB2 films of various thickness and extracted their thickness dependent in-plane intraband diffusivities by using Gurevich model developed for two-band MgB2 superconductor in dirty limit. Results showed that π band diffusivity (Dπ) decreases rapidly from 71.12 cm^2/s for 100 nm film to 4.6 cm^2/s for 5 nm film where as �� band diffusivity (����) decreases much slower from 2.8 cm^2/s for 100 nm film to 0.8 cm^2/s for 5 nm film. This larger Dπ than ���� indicates the cleaner π band. / Physics
634

Magnesium Diboride Devices and Applications

Melbourne, Thomas January 2018 (has links)
Magnesium diboride MgB2 is an interesting material that was discovered to be a superconductor in 2001. It has a remarkably high critical temperature of 39 K which is much greater than was previously thought possible for a phonon-mediated superconductor. MgB2 was also the first material found to exhibit multiple gap superconductivity. It has two energy gaps, the pi gap with a value of 2.3 meV, and the sigma gap with a value of 7.1 meV. Both the high critical temperature and the multiple large energy gaps make MgB2 an attractive candidate for superconducting devices. While the initial discovery of MgB2 was accompanied by much excitement, the enthusiasm has mostly disappeared due to the lack of progress made in implementing MgB2 in practical devices. The aim of this thesis is to attempt to reinvigorate interest in this remarkable material through a study of a variety of practical superconducting devices made with MgB2 thin films grown by hybrid physical-chemical vapor deposition (HPCVD). Two different methods of fabricating MgB2 Josephson junctions are explored. The first is a sandwich type trilayer configuration with a barrier made by magnetron sputtered MgO. Junctions of this sort have been previously studied and implemented in a variety of devices. While they do show some attractive properties, the on-chip spread in critical current due to barrier non-uniformity was too high to be considered a viable option for use in many-junction devices. By developing a fabrication scheme which utilizes electron beam lithography, modest improvements were made in the on-chip parameter spread, and miniaturization of junction size yielded some insight into the non-uniform barriers. The second approach of creating MgB2 Josephson junctions utilized a planar geometry with a normal metal barrier created by irradiating nano-sized strips of the material with a focused helium ion beam. The properties of these junctions are investigated for different irradiation doses. This new technique is capable of producing high quality junctions and furthermore the parameter spread is greatly reduced as compared to the sandwich type junctions. While more research is necessary in order to increase the IcRn products, these junctions show promise for use in many-junction devices such as RSFQ circuits. Prior to this work, the largest substrates that could be coated with HPCVD grown MgB2 were 2" in diameter. A new chamber was designed and constructed which demonstrated the ability to coat substrates as large as 4". This scaled-up system was used to grow MgB2 films on 1 x 10 cm flexible substrates. A method of fabrication was developed which could pattern these 10 cm long samples into ribbon cables consisting of many high frequency transmission lines. This technology can be utilized to increase the cooling efficiency of cryogenic systems used for RSFQ systems which require many connections between low temperature and room temperature electronics. Finally, a method of producing MgB2 films with thicknesses as low as 8 nm was developed. This is achieved by first growing thicker films and using a low angle ion milling step to gradually reduce the film thickness while still maintaining well connected high quality films. A procedure was developed for fabricating meandering nanowires in these films with widths as low as 100 nm for use as superconducting nanowire single photon detectors (SNSPDs). A study of the transport properties of these devices is first presented. Measurements show low values of kinetic inductance which is ideal for high count rates in SNSPDs. The kinetic inductance measurements also yielded the first measurements of the penetration depth of MgB2 films in the ultra-thin regime. Devices made from these ultra-thin films were found to be photon sensitive by measurements made by our collaborators. / Physics
635

Energetic Deposition of Niobium Thin Film in Vacuum

Wu, Genfa 23 July 2002 (has links)
Niobium thin films are expected to be free of solid inclusions commonly seen in solid niobium. For particle accelerators, niobium thin film has the potential to replace the solid niobium in the making of the accelerating structures. In order to understand and improve the superconducting performance of niobium thin films at cryogenic temperature, an energetic vacuum deposition system has been developed to study deposition energy effects on the properties of niobium thin films on various substrates. The system directly uses microwave power to create a pure niobium plasma, which can be used to extract niobium ion flux with controllable kinetic energy for direct deposition. The ultra high vacuum avoids the gaseous inclusions in thin films. A retarding field energy analyzer is developed and used to measure the kinetic energy of niobium at the substrate location. A systematic process for thin film characterization is developed and used to analyze the niobium thin films made by this energetic condensation. The properties of niobium thin films at several deposition energies are obtained, and the results show that there exists a preferred deposition energy around 115eV. / Ph. D.
636

Analysis of the Power Conditioning System for a Superconducting Magnetic Energy Storage Unit

Superczynski, Matthew J. 04 September 2000 (has links)
Superconducting Magnetic Energy Storage (SMES) has branched out from its application origins of load leveling, in the early 1970s, to include power quality for utility, industrial, commercial and military applications. It has also shown promise as a power supply for pulsed loads such as electric guns and electromagnetic aircraft launchers (EMAL) as well as for vital loads when power distribution systems are temporarily down. These new applications demand more efficient and compact high performance power electronics. A 250 kW Power Conditioning System (PCS), consisting of a voltage source converter (VSC) and bi-directional two-quadrant DC/DC converter (chopper), was developed at the Center for Power Electronics Systems (CPES) under an ONR funded program. The project was to develop advanced power electronic techniques for SMES Naval applications. This thesis focuses on system analysis and development of a demonstration test plan to illustrate the SMES systems' ability to be multitasked for implementation on naval ships. The demonstration focuses on three applications; power quality, pulsed power and vital loads. An integrated system controller, based on an Altera programmable logic device, was developed to coordinate charge/discharge transitions. The system controller integrated the chopper and VSC controller, configured applicable loads, and dictated sequencing of events during mode transitions. Initial tests with a SMES coil resulted in problems during mode transitions. These problems caused uncontrollable transients and caused protection to trigger and processors to shut down. Accurate models of both the Chopper and VSC were developed and an analysis of these mode transition transients was conducted. Solutions were proposed, simulated and implemented in hardware. Successful operation of the system was achieved and verified with both a low temperature superconductor here at CPES and a high temperature superconductor at The Naval Research Lab. / Master of Science
637

Exploring Heavy Fermion Physics in van der Waals Materials

Posey, Victoria January 2024 (has links)
First, I introduce the concept of heavy fermion systems and discuss the ease of tuning their properties with external parameters including pressure, chemical doping, and magnetic fields to induce new quantum states such as unconventional superconductivity. I then delve into the limited use of dimensionality as a tuning knob for quantum criticality and highlight the new possibilities available if heavy fermion behavior is discovered in the single-layer limit. Chapter 1 establishes the van der Waals material, CeSiI, as a heavy fermion system and is the first material where heavy fermion behavior exists down to the few-layer limit. The chapter further explores the bulk magnetic properties and electronic structure of CeSiI at high magnetic fields. The quasi-two-dimensional electronic character of CeSiI leads to anisotropic hybridization between local moments and conduction electrons, a phenomenon previously only realized in theoretical calculations. With the heavy fermion properties of CeSiI established, Chapter 2 investigates the effects of pressure and La-doping on CeSiI, aiming to push it from the antiferromagnetic region of the Doniach phase diagram towards a quantum critical point. Preliminary evidence suggests that CeSiI is too distant from quantum criticality. Instead, La-doping is utilized to explore single-ion Kondo physics at the dilute Ce limit in CeSiI. Additionally, CeGaI, with a crystal structure similar to CeSiI, is examined. Although no Kondo physics is observed, the magnetic and electronic properties remain coupled to each other. Chapter 3 delves into a separate project focusing on the study of polymers composed of perylene diimide and various organic linkers. It explores how the structure of the polymer influences its pseudocapacitance properties. The chapter demonstrates the significance of contortion in device performance, aiming to provide insights for future endeavors in developing environmentally friendly energy storage systems.
638

Topology and Strong correlation effect of Hidden symmetry breaking superconductor / 隠れた対称性の破れを伴う超伝導体におけるトポロジーと強相関効果

Nogaki, Kosuke 25 March 2024 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(理学) / 甲第25103号 / 理博第5010号 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 柳瀬 陽一, 教授 石田 憲二, 准教授 北川 俊作 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
639

Superconductors and high magnetic fields

Lewin, Richard Peter January 2012 (has links)
This thesis describes a portfolio of work aimed at the high field applications of superconductors and can be split into four main topics: The thermal stability of technical superconductors. This section investigates the effects of thermal perturbations on technical superconducting wire used in MRI scanner construction. The ultimate aim of this section is to predict how the architecture of the wire may affect its thermal stability. To this end a detailed finite element analysis model was constructed, verified by detailed experimental data, which could then be used to quickly and easily vary the wire’s parameters. Design of a high field pulsed electromagnetic coil for flux trapping in superconductors. This section details the design, construction and testing of a novel pulsed high field magnet. The design uses finite element analysis to predict the electromagnetic, thermal and structural properties of the coil. Explosive testing of high tensile fibres used in the construction of the high field coil. This section describes the refinement and use of a novel method for testing the mechanical properties of high tensile fibres in cylindrical geometries by using highly pressurized copper vessels. Pulsed field magnetization of bulk high temperature superconductors. This section discusses the process of magnetizing bulks of high temperature superconductors by using pulsed magnetic fields. It investigates how the trapped field varies with the magnitude and rise-time of the magnetizing field, sample temperature and time after magnetization.
640

Ginzbutrg-Landau theory with hidden order parameter applied to interface superconductivity / TEORIA DE GINZBURG-LANDAU COM PARÃMETRO DE ORDEM ESCONDIDO APLICADA AO ESTUDO DA SUPERCONDUTIVIDADE DE INTERFACE

VICTOR NOCRATO MOURA 21 February 2017 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / In recent years, several experiments have been reported in which interface superconductivity was observed in heterostructures of different materials, inclunding non-superconductors. The origin of this superconductivity has not yet been elucidated and there is no well-established theory to explain this phenomenon. In 2015 a model based on the Ginzburg-Landau theory was proposed that would explain the interface superconductivity phenomenon assuming a system with two order parameters. It has been proposed that the order parameter characterizing the bulk material with a defective or doped layer permits the formation of a second parameter which competes with the former and prevails over it in the vicinity of the interface. The superconductivity at the interface is then explained by the growth of this second order parameter only in this region, remaining still ``hidden" inside the bulk. The model was applied to a one-dimensional system with an interface, which presented a surprising result: the ``hidden" superconductivity appers in quantized critical temperatures, this allowing the existence of several eigenstates of the system, with different critical temperatures. In this dissertation, we use this model and investigate the unfolding of hidden superconductivity and its quantized temperatures. We observe that the interfaces resemble one-dimensional quantum wells, with the critical temperature playing the role of the energy in the quantum case. Following this idea we use numerical methods to solve the Ginzburg-Landau equations for a system with an arbitrary number of parallel interfaces. Our results show that in this case, the critical temperatures are quantized and degenerate when the interfaces are very separated, but it has its degeneracy broken when we approach the interfaces, as it happens in a lattice of square wells. We then proposed a tight-binding model to estimate critical temperatures on parallel interfaces and verified the validity of this approximation through the numerical solution of the complete problem. We also analyze the vortex states for a square two-dimensional defect, verifying the possibility of creating or destroying vortices in the region of `` hidden" superconductivity through an external magnetic field. / Nos Ãltimos anos foram reportados diversos experimentos em que a supercondutividade de interface foi observada em heteroestruturas de diferentes materiais, inclusive em nÃo-supercondutores extit{a priori}. A origem dessa supercondutividade ainda nÃo foi elucidada e nÃo existe uma teoria bem estabelecida para explicar esse fenÃmeno. Em 2015 foi proposto um modelo com base na teoria de Ginzburg-Landau que explicaria o fenÃmeno de supercondutividade de interface assumindo um sistema com dois parÃmetros de ordem. Foi proposto que o parÃmetro de ordem que caracteriza o material extit{bulk} com uma camada defeituosa, ou dopada, permite a formaÃÃo de um segundo parÃmetro que compete com o primeiro e prevalece sobre ele nas proximidades da interface. A supercondutividade na interface à entÃo explicada pelo crescimento deste segundo parÃmetro de ordem apenas nesta regiÃo, permancecendo ainda ``escondido" dentro do extit{bulk}. O modelo foi aplicado para um sistema unidimensional com uma interface, apresentando um resultado surpreendente: a supercondutividade escondida aparece em temperaturas crÃticas quantizadas, podendo entÃo existir vÃrios autoestados do sistema, com diferentes temperaturas crÃticas. Nessa dissertaÃÃo utilizamos esse modelo e investigamos os desdobramentos da supercondutividade escondida e suas temperaturas quantizadas. Percebemos que as interfaces assemelham-se com poÃos quÃnticos unidimensionais, com a temperatura crÃtica fazendo o anÃlogo ao da energia no caso quÃntico. Seguindo essa ideia utilizamos mÃtodos numÃricos para resolver as equaÃÃes de Ginzburg-Landau para um sistema com um nÃmero arbitrÃrio de interface paralelas. Nossos resultados mostram que neste caso, as temperaturas crÃticas, alÃm de quantizadas, sÃo degeneradas quando as interfaces estÃo muito separadas, mas tem essa degenerescÃncia quebrada quando aproximamos as interfaces, como ocorre em uma rede de poÃos quadrados. Propusemos entÃo um modelo tipo extit{tight-binding} para estimar temperaturas crÃticas em interfaces paralelas e verificamos a validade dessa aproximaÃÃo atravÃs da soluÃÃo numÃrica do problema completo. Analisamos tambÃm os estados de vÃrtices para um defeito bidimensional quadrado, verificando a possibilidade de se criar ou destruir vÃrtices na regiÃo de supercondutividade escondida atravÃs de um campo magnÃtico externo.

Page generated in 0.0232 seconds