• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 22
  • 20
  • 10
  • 4
  • 2
  • 1
  • Tagged with
  • 142
  • 142
  • 35
  • 32
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Autothermal non-catalytic reformation of jet fuel in a supercritical water medium

Picou, Jason W. January 2008 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed June 9, 2009) Includes bibliographical references (p. 64-67).
42

Topics in molecular dynamics.

Siavosh-Haghighi, Ali, January 2004 (has links)
Thesis (Ph.D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 113-118). Also available on the Internet.
43

Applications of unconventional processes in polymer synthesis-supercritical fluids and sonochemistry

Wang, Ruolei. January 2005 (has links)
Dissertation (Ph. D.)--University of Akron, Dept. of Chemical Engineering, 2005. / "August, 2005." Title from electronic dissertation title page (viewed 12/27/2005) Advisor, H. Michael Cheung; Committee members, J. Richard Elliott, Stephanie T. Lopina, A. Dhinojwala, Avraam I. Isayev; Department Chair, Steven S. Chuang; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
44

Topics in molecular dynamics.

Siavosh-Haghighi, Ali, January 2004 (has links)
Thesis (Ph.D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 113-118). Also available on the Internet.
45

Emulsions and microemulsions of water and carbon dioxide novel surfactants and stabilization mechanisms /

Ryoo, Won Sun, Johnston, Keith P., January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Supervisor: Keith P. Johnston. Vita. Includes bibliographical references.
46

An investigation of the effect of co-solvents on the hydrothermal liquefaction of microalgae biomass

Nongauza, Sinethemba Aubrey January 2015 (has links)
The study introduces and demonstrates the viability of the continuous flow reactor (CFR) system for the production of bio-crude oil (BCO) from wet microalgae. Preliminary experiments conducted in the CFR system in hot compressed water (HCW) were successful in converting wet microalgae into liquid BCO. However, the synthesis and aggregation of high boiling point (HBP) components of BCO and the accumulation of char in the tubular piping of CFR system were identified as the limiting factor to the viability of the system. The aggregation of HBP components and the accumulation of char result to system blockage which prevents the continuous flow of the liquefaction product mixture in the CFR system. Inhibiting the reactions leading to the formation of HBP components and char will improve the performance of the CFR system. Therefore, the study seeks to incorporate co-solvents in the liquefaction reaction media in an attempt to inhibit or minimize the prevalence of HBP components of BCO. As such, different co-solvents were screened for their influence on improving the quality of BCO with respect to its boiling point profile (BPP), initial and final boiling point, as well as the amount of char recovered from each experiment. Only one co-solvent was chosen for further exploration in the CFR system. Batch liquefaction reactor’s (BLR) made up of stainless steel were used to carry out the co-solvent screening experiments. These experiments were carried out at a constant temperature (280 °C), pressure (75 bar), and co-solvent concentration (10 wt.%), at varying residence times. Solvent extraction with dichloromethane (DCM) was performed on the liquefaction product mixture to separate the products, viz. BCO, char and water soluble components. The extracted BCO was analysed through simulated distillation (SimDis) to obtain the BPP. The BPP properties of the BCO samples, from different liquefaction media, and the amount of char recovered were highly influenced by the addition of a co-solvent. The final boiling point (FBP) of tetralin, heptane, and n-octanol BCO products were significantly reduced to below 500 °C for all tested residence times except at 20 minutes. The residence time also proved to be influential in the processing of wet microalgae. n-Octanol was selected as the optimal performing co-solvent and was used for the continuous liquefaction of wet microalgae in the CFR system. The CFR system was modified by adding a co-solvent feed line into the continuous system since n-octanol was insoluble in water. The n-octanol pump was set at different flow rates, 0.2, 0.3, and 0.4 g/min, which resulted in a concentration of about 10 wt.% in the reactor feed. The concentration of n-octanol had a significant influence on the BPP of BCO components. The FBP’s were reduced with an increase in n-octanol concentration. The initial boiling point (IBP) of n-octanol BCO was increased to just above 100 °C which was required for the stability of the BCO product. The components of BCO were identified by GCMS. n-Octanol also proved to affect the composition of the BCO with respect to its components. HCW BCO components were significantly different from those identified from n-octanol BCO. A second co-solvent (tetralin) was used to prove whether the difference on the components of BCO was affected by n-octanol. The results proved that indeed the addition of different solvents in liquefaction reaction media favours the formation of different components. The amount of char formed was also reduced when using a co-solvent. A decrease in the oxygen/nitrogen compounds was also observed in the presence of a co-solvent, thus improving BCO properties.
47

Investigation of mass spectrometric interfaces for supercritical fluid chromatography and liquid chromatography

Jedrzejewski, Paul T. 28 August 2003 (has links)
The performance characteristics of the particle beam interface (PB) coupled to supercritical fluid chromatography (SFC) and mass spectrometry (MS) were assessed with pure and methanol-modified CO₂. Factors which affect the nebulization and the subsequent desolvation of the droplets were assessed. The quantitative performance was evaluated yielding a limit of detection (LOD) of 40 ng (caffeine) for scan data which is some 3 to 25 times lower than previously reported studies. Operation of the SFC-PB-MS system was found to be highly dependent on the mobile phase characteristics (flow rate and composition). Between 0.1 to 0.64 mL/min liquid CO₂ flow, relatively stable operation of the system was determined; whereas beyond this range significant losses in sensitivity were observed. Mobile phase composition was shown to have a dramatic effect with 4% methanol-modified CO₂ yielding the most sensitive results; whereas, no detection was possible with pure CO₂. This lack of sensitivity with pure CO₂ and dependence of sensitivity on mobile phase composition, presented a problem in method development. The SFC-PB-MS system was therefore modified by employing a particle forming solvent (PFS). The purpose of the PFS was to aid in the formation of an aerosol. With the PFS solvent, mobile phase composition had no effect on sensitivity and detection of analytes eluted with pure CO₂ was achieved. The nature, composition, and flow rate of the PFS were found to be crucial to the optimum operation. Quantitative performance of the system was improved by a factor of 4 to 5 over the prior system. The analysis of pesticides, steroids, and polyaromatic hydrocarbons was achieved with the SFC-PB-MS system. The resulting EI spectra were artifact-free and gave good matches on comparing with on-line library spectra. Packed column SFC, however, is only able to handle directly non-polar to medium polar analytes. Thus for polar to highly polar analytes (peptides, proteins) liquid introduction (infusion, flow injection, chromatography) is the preferred method of sample delivery to the MS. Furthermore because of the polar nature and thermal lability of these compounds conventional ionization methods (EI, CI) are not suitable. Factors which have ramification on sample handling (flow rate, solution composition) were studied. The high sample flow rate capability was dependent on effective nebulization and desolvation. Thus, needle distance/angle and bath gas flow setting played a critical role in the performance of the ES-MS. The utility of the system was demonstrated by analysis of gramicidin s, myoglobin, and tryptic peptides of cytochrome c. / Ph. D.
48

Establishment of a supercritical pilot plant and the hydrodynamics of supercritical countercurrent columns

Franken, Hendrik Hermanus 12 1900 (has links)
Thesis (MEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Supercritical fluids are enjoying ever increasing popularity as a solvent medium for extraction, stripping and absorption processes. Being readily tuneable and able to achieve sharp, highly efficient separations, supercritical fluids present an attractive alternative to traditional solvents, while using less intrinsically harmful compounds. Although the potential of supercritical fluids as solvents have been known for more than a century, there are still several areas of uncertainty, one being the hydrodynamics of extraction columns operating under supercritical conditions. This shortcoming can be attributed to the satisfactory performance of modified standard hydrodynamics to approximate column design, along with a predominant culture of overdesign in process engineering. Even though modified subcritical hydrodynamic models provide a good approximation they do not successfully predict the effect of changes in density, viscosity and surface tension of a supercritical fluid, leading to inaccuracies in column design. This study investigates the state of hydrodynamics under supercritical conditions in counter current packed columns discussed in literature, identifies shortcomings in existing literature and devises a way of addressing the said shortcomings. The primary objective of this study is to establish a multipurpose supercritical pilot plant capable of measuring hydrodynamics under supercritical conditions, followed by the secondary objective of measuring preliminary hydrodynamic data to prove the plant can deliver on its design requirements in measuring reliable hydrodynamic data. During a survey of available literature it was found that very little experimental work has been performed on hydrodynamics under supercritical conditions and especially on random packings. Further it is found that the systems investigated in literature were conducted under conditions of significant mass transfer. As mass transfer directly affects flow rates and fluid properties of the fluids in the column, it is vital to use systems with very little to no mass transfer. This ensures the most accurate approach possible when investigating fundamental hydrodynamic behaviour. Finally it was found that there are no well-defined correlations available for a wide range of packings, fluid properties and hydrodynamic phenomena for columns under supercritical conditions. To remedy the shortcomings in hydrodynamic data it was decided that more pilot plant work is required. It was found that no pilot plants available can measure hydrodynamic data. An investigation was performed into retrofitting available pilot plants, plants used by other research groups and commercially available plants. It was concluded that the best option was to salvage the major parts of an existing old pilot plant and use them to construct a new, customized pilot plant. This provides the opportunity of constructing a custom, multipurpose pilot plant capable of use in future research. After an initial concept design a full design of the new pilot plant was performed. The plant consists of two columns of 17 mm and 38 mm inside diameter and 3.5 m and 1.5 m packed height, respectively, and is capable of pressures and temperatures of up to 300 bar and 200°C. Furthermore the pilot plant can measure liquid hold-up, pressure drop, flooding and entrainment in accordance with the objective of measuring supercritical hydrodynamic data. Liquid hold-up was determined by stopping the process and allowing the column to drain, after which the volume drained was measured. To measure the pressure drop an Endress+Hauser Deltabar S PMD75 DP cell was used. Flooding was determined using the measured pressure drop and volumetric rate of column overheads, from where a hydrodynamically inoperable state is defined. Overall entrainment, although unlikely due to the presence of a demister in the column, was investigated by comparing the column overheads to literature phase equilibria. Preliminary hydrodynamic testing was performed using the 38mm diameter column packed with 1/4” Dixon rings. Testing is performed with at 120 bar and 40°C with a CO2 supercritical phase and polyethylene glycol liquid phase with an average molar mass of 400 (PEG 400). The hydrodynamic data gathered showed expected trends, but showed discrepancy with literature due to differences in liquids used, column packing and experimental system between the respective studies. / AFRIKAANSE OPSOMMING: Superkritiese vloeistowwe is besig om toenemende gewildheid as 'n oplosmiddel vir ekstraksie, stroping en absorpsie prosesse te geniet. Hierdie gewildheid is as gevolg van ʼn vermoë om skerp, hoogs effektiewe skeidings te bewerkstellig deur gebruik te maak van ʼn maklik aanpasbare oplosmiddel wat minder intrinsiek skadelik is as tradisionele oplosmiddels. Hierdie voordele lei daartoe dat superkritiese vloeiers as ʼn aantreklike alternatief tot tradisionele oplosmiddels gesien kan word. Alhoewel die potensiaal van superkritiese vloeistowwe as oplosmiddels al vir meer as ʼn eeu bekend is, is nog weinig eksperimentele werk al gedoen oor die hidrodinamiese gedrag van superkritiese gepakte kolomme. Hierdie tekortkoming kan toegeskryf word tot die bevredigende prestasie van aangepaste standaard hidrodinamiese korrelasies gedurende superkritiese kolomontwerp en ʼn oorheersende kultuur van oorontwerp in proses-ingenieurswese. Alhoewel aangepaste standaard hidrodinamiese korrelasies ʼn aanvaarbare benadering bied, beeld dit nie die effek van die veranderde digtheid, viskositeit en oppervlakspanning van ʼn superkritiese vloeistof uit nie, wat lei tot foute in kolomontwerp. Hierdie studie ondersoek die stand van superkritiese hidrodinamika in literatuur, spesifiek in teenstroom gepakte kolomme. Tekortkominge in die bestaande literatuur is geïdentifiseer en 'n metode om die genoemde tekortkominge reg te stel is bedink. Die primêre doel van hierdie studie is om 'n veeldoelige superkritiese loodsaanleg te bou wat tot staat is om superkritiese hidrodinamika te meet, gevolg deur die sekondêre doelwit wat die meet van voorlopige hidrodinamiese data behels, wat sal bewys dat die loodsaanleg voldoen aan ontwerpsvereistes. Tydens 'n opname van beskikbare literatuur was daar gevind dat weinig eksperimentele werk al gedoen is in die veld van superkritiese hidrodinamika, en nog minder oor sogenoemde ongeordende of ‘random’ kolompakkings. Verder is daar gevind dat eksperimente uitgevoer in literatuur slegs bestaan uit stelsels waar beduidende massa-oordrag plaasvind. Aangesien massa-oordrag die vloeitempo en fisiese eienskappe van die vloeiers in ʼn kolom direk beïnvloed, is dit noodsaaklik om gebruik te maak van stelsels met baie min of geen massaoordrag. Dit verseker ʼn akkurate benadering tot die meet van fundamentele hidrodinamiese gedrag. Laastens is gevind dat daar geen hidrodinamiese korrelasies beskikbaar is wat ʼn wye verskeidenheid van kolompakkings, vloeier eienskappe en hidrodinamiese verskynsels onder superkritiese toestande dek nie. Om die tekortkominge in superkritiese hidrodinamika in literatuur aan te spreek, word meer eksperimentele loodsaanlegwerk vereis. Daar is gevind dat geen van die beskikbare loodsaanlegte hidrodinamiese data kan meet nie. Ondersoek is ingestel tot die ombouing van bestaande loodsaanlegte, aanlegte wat gebruik is deur ander navorsingsgroepe en kommersieel beskikbare aanlegte. Daar is tot die gevolgtrekking gekom dat die beste opsie is om ʼn nuwe loodsaanleg self te bou en gebruik te maak van parte uit een van die ou bestaande aanlegte om kostes laag te hou. Sodoende kan ʼn veeldoelige, pasgemaakte loodsaanleg gebou word wat ook vir toekomstige navorsing gebruik kan word. Na ʼn aanvanklike konsep ontwerp vir die nuwe loodsaanleg, is ʼn volledige ontwerp gedoen. Die aanleg bestaan uit twee kolomme van onderskeidelik 17 mm en 38 mm binnedeursnee en 3,5 m en 1,5 m gepakte hoogte, en is in staat om eksperimente by ʼn maksimum druk en temperatuur van tot 300 bar en 200°C uit te voer. Verder is die loodsaanleg in staat daartoe hidrodinamiese data te meet, naamlik die vloeistofophoud in die kolom, drukval oor die kolompakking, kolomvloed en druppel meesleuring. Die vloeistofophoud in die kolom is bepaal deur alle voer tot die kolom te stop en tyd toe te laat vir die vloeistof om te dreineer, waarna die gedreineerde afgetap en gemeet is. Om die drukval te meet word ʼn Endress+Hauser Deltabar S PMD75 DP sel gebruik. Kolomvloed is bepaal met behulp van die drukval oor die kolom en die vloeitempo van die kolom se boonste produkstroom, van waar ʼn hidrodinamies onbruikbare toestand gedefinieer word. Algehele druppel meesleuring, alhoewel onwaarskynlik as gevolg van die teenwoordigheid ʼn ontwasemer in die kolom, is wel ondersoek deur die vloeistofinhoud in die kolom se boonste produkstroom te vergelyk met fase ewewigsdata in literatuur. Voorlopige hidrodinamiese eksperimente is uitgevoer met behulp van die 38mm deursnee kolom gepak met 1/4 " Dixon ringe. Eksperimente is uitgevoer by 120 bar en 40 ° C met 'n CO2 kritiese fase en 'n poliëtileenglikol vloeistof fase met ʼn gemiddelde molêre massa van 400 (PEG 400). Die hidrodinamiese data het verwagte tendense getoon, maar diskrepansies met literatuur waardes. Die verskille tussen die eksperimentele en literatuur data word geregverdig deur die verskille tussen die vloeistowwe, pakking en eksperimentele stelsels wat in die onderskeie studies gebruik is.
49

Phase behavior of multicomponent mixtures of complex molecules in supercritical fluids

Hassan, Ali (Ali Humaid) 04 April 1997 (has links)
Graduation date: 1997
50

Deposition of chemicals in semi-porous solids using supercritical fluid carriers

Sahle-Demessie, Endalkachew 06 May 1994 (has links)
Graduation date: 1994

Page generated in 0.0243 seconds