• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 22
  • 20
  • 10
  • 4
  • 2
  • 1
  • Tagged with
  • 142
  • 142
  • 35
  • 32
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design of a Pressure-fed Gas System Operating at Supercritical Temperatures and Pressures

Juhee Hyun (5930675) 10 June 2019 (has links)
<p>The purpose of the project is to replicate conditions found inside the reaction chamber of a nuclear thermal propulsion (NTP) rocket engine, thereby evaluating robust materials and construction techniques for future NTPs. The need to test materials exposed to hydrogen under combined high temperatures and pressures is crucial to determine their resistance to hydrogen attack.</p> <p>The proposed test article is a SiC resistive heating element which would heat the hydrogen gas flowing at 5.6 g/s from 300 to 2400 K at nominal pressure of 1000 psia then cool it to below its auto-ignition temperature before it is vented to the ambient air. The experimental evaluation of the test article should validate the reliability of materials used in the construction of the pressure vessel. The pressure vessel houses a resistive heating element made from open-cell refractory carbide foam which pairs well with hot hydrogen gas due to its resistance to thermal shock. The enclosure to encapsulate the heating element is lined with an oxide coated rhenium tube capable of sustaining high thermal and structural loads, and the outer shell is made from Inconel 718. Rhenium is a robust material with excellent ductility, is non-reactive with hydrogen, and is creep-resistant at high temperatures. Inconel 718 has a high yield strength capable of handling high temperature applications. </p> <p>Cooling the hydrogen gas requires designing a water-cooled nozzle to transport the gas to a heat exchanger. The design of the nozzle and its mechanical components involved analyzing the heat transfer through materials, predicting their structural integrity, and examining potential failure points. The 1-D steady-state heat transfer analysis is conducted to predict the inner and outer surface temperatures, heat flux, and fluid heat transfer coefficients. These parameters are considered in selecting the best candidate materials, copper and Inconel 718, to make the nozzle. To prevent gas leakage between interfaces of multiple components and joints, a careful selection of sealing techniques are implemented, including the use of bimetallic weldments and pressure-energized metal seals. </p> <p>Although the proposed test article was never tested due to schedule and budget limitations, the documentation of its design and analysis is complete and the system is ready for manufacturing and testing. The long lead times to manufacture, to inspect, and to validate the vessel were underestimated in the project scheduling. The rental cost of the electrical equipment required to run the test under initial design conditions exceeded budget. As a solution to satisfy the temperature and budget requirements, halving the flow rate and decreasing the delivered electrical power by 48% are proposed. </p> <p> The success of testing the pressure vessel at operating conditions would provide a physical and quantitative study on potential materials used on future NTP ground tests. The test would run for 5 minutes during which the strength of the materials weaken as a result of the diffusion of free carbon from their surfaces. Upon completion of the test, the performance of these materials would be evaluated for signs of macroscopic and microscopic surface effects on the test article. </p> <p> </p>
72

Extração de Insumos farmacêuticos por fluído supercrítico / Extraction of pharmaceutical ingredients by supercritical fluid

Maul, Aldo Adolar 17 August 1998 (has links)
Não consta resumo na publicação / Abstracts not available.
73

Extração de Insumos farmacêuticos por fluído supercrítico / Extraction of pharmaceutical ingredients by supercritical fluid

Aldo Adolar Maul 17 August 1998 (has links)
Não consta resumo na publicação / Abstracts not available.
74

Novos tensoativos não-iônicos para CO2-supercrítico: síntese e estudo de algumas propriedades / New nonionic surfactants for supercritical CO2: synthesis and study of some properties

Cordeiro, Tiago de Angelis 11 May 2012 (has links)
O CO2 supercrítico (CO2-sc) é um bom solvente para substâncias apolares e pouco polares de baixa massa molecular. A fim de tornar este meio um melhor solvente para uma gama maior de substâncias, desenvolvemos 8 novos tensoativos, sendo seis derivados de açúcares (N-metil-D-glucamina, 2-D-Glucosamina e Sorbitano) e três derivados de óleos vegetais (linhaça e palma). Os tensoativos possuem como grupos CO2-fílicos, o acetato (peracetilados) ou o t-butil-glicidil-éter, e como grupo CO2-fóbico o dodecanoato, que pode proporcionar um ambiente \"apolar\" em eventuais agregados formados em CO2-sc. A solubilidade e o comportamento de fase destes novos tensoativos em CO2-sc foram investigados, mostrando-se bastante solúveis e apresentando pontos de névoa comparáveis a outros tensoativos fluorados (mais agressivos, do ponto de vista ambiental). A polaridade que estes tensoativos agregam ao meio foi verificada através de análises de solvatocromismo, utilizando o corante de Reichardt (Betaína-30) e fluorescência de pireno, as quais mostraram resultados bastante promissores, obtendo-se polaridades baixas e médias (similares a álcoois de cadeia média ou solventes clorados). / Supercritical CO2 (sc-CO2) is a good solvent for non-polar or almost non-polar substances with low molecular mass. In order to turn this medium into a better solvent for a wider range of substances, we developed 8 new surfactants, six of them sugar derivatives (N-methyl-D-glucamine, 2-D-Glucosamine and Sorbitan), and three of them vegetable oil derivatives (palm and linseed). The surfactants have either acetate (peracetylated) or t-butyl-glycidyl ether as CO2-philic groups, and as CO2-phobic group, dodecanoate, that can provide an \"apolar\" environment in aggregates that might be formed in sc-CO2. The solubility and phase behavior of these new surfactants in sc-CO2 were investigated, and they showed to be very soluble presenting low cloud pressures comparable to fluorinated surfactants (that are more aggressive from an environmental perspective). The polarity that these new surfactants brought to the medium was verified through the solvatochromic analysis, using the Reichardt\'s dye (Betaine-30) and pyrene fluorescence, which showed promising results, with polarities similar to medium chain alcohols or chlorinated solvents
75

Supercritical fluids synthesis of BaTiO3 based nanoparticles : study of the particles growth mechanisms, powder processing and ferroelectric properties / Synthèse en milieux supercritiques de nanoparticules à base de BaTiO3 : étude des mécanismes de formation, mise en forme des poudres et ferroélectricité

Philippot, Gilles 16 October 2014 (has links)
Dans un contexte où l’électronique est au centre de notre société, la productiond’appareils de plus en plus compacts et multifonctionnels concentre les efforts en rechercheet développement. Pour répondre à cette attente, une des options est d’augmenter lerendement volumique des composants passifs tels que les condensateurs, en se basant surl’utilisation de nanoparticules diélectriques du type BaTiO3. Dans un premier temps,l’objectif est d’optimiser la synthèse des nanoparticules de BaTiO3 et de comprendre leursmécanismes de formation en milieux fluides supercritiques. Pour ce faire nous avonscombiné des méthodes d’analyses ex situ telles que la microscopie électronique, ladiffraction des rayons X, et les spectroscopies Raman ou infra rouge à des mesures in situsynchrotron de diffraction des rayons X aux grands angles. L’étude a par la suite ététransposé à l’élaboration de la totalité des solutions solidesBa1-xSrxTiO3 (0 ≤ x ≤ 1) et BaTi1-yZryO3 (0 ≤ y ≤ 1). Une fois les synthèses optimisées, l’utilisation du spark plasma sintering(SPS) nous a permis de mettre en oeuvre des céramiques denses et nanostructurées,préservant la taille initiale des particules (20 nm), ceci afin d’étudier les propriétésintrinsèques des matériaux à l’échelle nanoscopique. Enfin, connaissant les propriétés debase de ces nanomatériaux, nous avons pu commencer à développer des matériauxhybrides diélectriques pour l’électronique flexible. / In a context where the electronic is at the center of our society, theproduction of more compact and multifunctional devices focuses the research efforts.To answer to the expectations, one option is to improve the volume efficiency ofpassive components such as capacitors using dielectric nanoparticles such asBaTiO3. First, the objective is to optimize the synthesis of BaTiO3 nanoparticles andunderstand their formation in supercritical fluids. To do this, we combinedconventional ex situ analyses such as X-ray diffraction, electronic microscopy,infrared and Raman spectroscopies with in situ synchrotron wide angle X-rayscattering analyses. This was then transferred to the development of Ba1-xSrxTiO3 (0≤ x ≤ 1) and BaTi1-yZryO3 (0 ≤ y ≤ 1) solid solutions. Once the syntheses wereoptimized, using spark plasma sintering (SPS), we processed the powders intodense and nanostructured ceramics keeping the starting particles size (20 nm), tostudy the materials intrinsic properties at the nanoscale. Finally, knowing thenanoparticles properties, we could start to develop hybrid dielectric materials forflexible electronics.
76

Computational Fluid Dynamics Studies in Heat and Mass Transfer Phenomena in Packed Bed Extraction and Reaction Equipment: Special Attention to Supercritical Fluids Technology

Guardo Zabaleta, Alfredo 01 March 2007 (has links)
El entendimiento de los fenómenos de transferencia de calor y de masa en medios porosos implica el estudio de modelos de transporte de fluidos en la fracción vacía del medio; este hecho es de fundamental importancia en muchos sistemas de Ingeniería Química, tal como en procesos de extracción o en reactores catalíticos. Los estudios de flujo realizados hasta ahora (teóricos y experimentales) usualmente tratan al medio poroso como un medio efectivo y homogéneo, y toman como válidas las propiedades medias del fluido. Este tipo de aproximación no tiene en cuenta la complejidad del flujo a través del espacio vacío del medio poroso, reduciendo la descripción del problema a promedios macroscópicos y propiedades efectivas. Sin embargo, estos detalles de los procesos locales de flujo pueden llegar a ser factores importantes que influencien el comportamiento de un proceso físico determinado que ocurre dentro del sistema, y son cruciales para entender el mecanismo detallado de, por ejemplo, fenómenos como la dispersión de calor, la dispersión de masa o el transporte entre interfaces.La Dinámica de Fluidos Computacional (CFD) como herramienta de modelado numérico permite obtener una visión mas aproximada y realista de los fenómenos de flujo de fluidos y los mecanismos de transferencia de calor y masa en lechos empacados, a través de la resolución de las ecuaciones de Navier - Stokes acopladas con los balances de materia y energía y con un modelo de turbulencia si es necesario. De esta forma, esta herramienta permite obtener los valores medios y/o fluctuantes de variables como la velocidad del fluido, la temperatura o la concentración de una especie en cualquier punto de la geometría del lecho empacado.El objetivo de este proyecto es el de utilizar programas comerciales de simulación CFD para resolver el flujo de fluidos y la transferencia de calor y de masa en modelos bi/tri dimensionales de lechos empacados, desarrollando una estrategia de modelado aplicable al diseño de equipos para procesos de extracción o de reacción catalítica. Como referencia se tomaran procesos de tecnología supercrítica debido a la complejidad de los fenómenos de transporte involucrados en estas condiciones, así como a la disponibilidad de datos experimentales obtenidos previamente en nuestro grupo de investigación. Estos datos experimentales se utilizan como herramienta de validación de los modelos numéricos generados, y de las estrategias de simulación adoptadas y realizadas durante el desarrollo de este proyecto. / An understanding of the heat and mass transfer phenomena in a porous media implies the study of the fluid transport model within the void space; this fact is of fundamental importance to many chemical engineering systems such as packed bed extraction or catalytic reaction equipment. Experimental and theoretical studies of flow through such systems often treat the porous medium as an effectively homogeneous system and concentrate on the bulk properties of the flow. Such an approach neglects completely the complexities of the flow within the void space of the porous medium, reducing the description of the problem to macroscopic average or effective quantities. The details of this local flow process may, however, be the most important factor influencing the behavior of a given physical process occurring within the system, and are crucial to understanding the detailed mechanisms of, for example, heat and mass dispersion and interface transport.Computational Fluid Dynamics as a simulation tool allows obtaining a more approached view of the fluid flow and heat and mass transfer mechanisms in fixed bed equipment, through the resolution of 3D Reynolds averaged transport equations, together with a turbulence model when needed. In this way, this tool permit to obtain mean and fluctuating flow and temperature values in any point of the bed. The goal of this project is to use commercial available CFD codes for solving fluid flow and heat and mass transfer phenomena in two and three dimensional models of packed beds, developing a modeling strategy applicable to the design of packed bed chemical reaction and extraction equipment. Supercritical extraction and supercritical catalytic reaction processes will be taken as reference processes due to the complexity of the transport phenomena involved within this processes, and to the availability of experimental data in this field, obtained in the supercritical fluids research group of this university. The experimental data priory obtained by our research group will be used as validation data for the numerical models and strategies dopted and followed during the developing of the project.
77

High Pressure Phase Equilibria in the Carbon Dioxide + Pyrrole System

Thamanavat, Kanrakot 01 December 2004 (has links)
The objectives of this work are to measure phase equilibria in the carbon dioxide + pyrrole system and to correlate and predict the phase behavior of this system with a thermodynamic model. This binary system is of interest due to the growing applications of supercritical carbon dioxide as a solvent or reaction medium for pyrrole. Polypyrrole is an electrically conducting polymer of interest in a number of applications such as anti-static coatings. Pyrrole has also been used as a reactant in enzymatic reaction. Knowledge of the phase behavior of carbon dioxide + pyrrole system is therefore necessary for evaluating optimal conditions and feasibility of such applications. Phase equilibria in the carbon dioxide + pyrrole system were measured at 313 K, 323 K, and 333 K using a synthetic method. Liquid-vapor (LV) phase behavior and liquid-liquid (LL) phase behavior were observed. The pressure in the experiments ranged from 84 to 151.1 bar. The Patel-Teja equation of state and the Mathias-Klotz-Prausnitz mixing rule with two temperature independent parameters was able to correlate the phase equilibrium data satisfactorily and was used to predict the phase behavior at other temperatures. A pressure-temperature diagram was then constructed from these calculations and suggests that the carbon dioxide + pyrrole system exhibit type IV phase behavior in the classification of Scott and van Konynenburg.
78

Synthesis Of Biodiesel In Supercritical Fluids

Rathore, Vivek 05 1900 (has links)
Alternative fuels are becoming important due to diminishing fossil fuel reserves and the environmental hazards associated with exhaust gases. Biodiesel is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible/non-edible oils. Though several methods are available for synthesis, transesterification is the preferred route for biodiesel synthesis. The current techniques for transesterification of the oils to biodiesel are based on acid/alkali catalysis. However, these methods do not work for oils with high free fatty acid content and also require an additional downstream step for separation of catalyst from the product. In this work, we investigate the synthesis of biodiesel by two techniques: in supercritical methanol and ethanol without any catalyst; in supercritical carbon dioxide using enzyme as catalyst. In the first technique, the transesterification of refined grade edible oil like sunflower oil, palm oil and groundnut oil, and crude non-edible oils like Pongamia pinnata and Jatropha curcas was investigated in supercritical methanol and ethanol without using any catalyst from 200 oC to 400 oC at 200 bar. The variables affecting the conversion during transesterification, such as molar ratio of alcohol to oil, temperature and time were investigated in supercritical methanol and ethanol. The conversion to biodiesel increased from 30-40% at a molar ratio of 10 to 80-85% at a molar ratio of 45 to 50. Very high conversions (96-97%) were obtained in supercritical methanol and ethanol within 30 minutes at 350 oC. The kinetics of the reaction was modeled, the rate coefficients and activation energies were determined. As an enzymatic transesterification in organic solvents is mass transfer limited, supercritical fluids are found to be a better alternative because of their gas like diffusivity. Among potentially interesting solvents for enzymatic synthesis, carbon dioxide is the most obvious choice in supercritical fluids, because it is non-toxic, nonflammable and easily available. Because the products and the enzyme do not dissolve in carbon dioxide at room conditions, separation can easily be achieved by reduction of pressure Thus, the enzymatic transesterification for production of biodiesel in supercritical fluids under mild conditions is of commercial interest. Therefore, biodiesel was synthesized using immobilized enzyme (Lipase, Novozym-435) in supercritical carbon dioxide. The effect of reaction variables like temperature, molar ratio, enzyme loading and kinetics of the reaction was investigated. The conversion to biodiesel was found to be lower in supercritical carbon dioxide than that in supercritical alcohol.
79

Supercritical fluid spray processes for microencapsulation and formation of submicron aqueous dispersions of pharmaceutical compounds

Young, Timothy John 14 May 2015 (has links)
Precipitation with a Compressed Fluid Antisolvent (PCA) and Rapid Expansion from Supercritical Solution (RESS) are two processes based on supercritical fluids that are capable of producing submicron particles. Novel variations of these basic processes have been examined to produce stable particles of various pharmaceutical compounds. PCA is an antisolvent precipitation technique where an organic solution of drug + polymer in solvent is atomized (sprayed) into supercritical (SC) CO₂. Upon liquid mixing, the solute materials precipitate to form microparticles. A Vapor-over-Liquid technique has been used to produce larger, uniform particle sizes of biodegradable polymers. By suspending a protein in the solvent phase, the protein can be encapsulated/coated by the precipitating polymer. RESS is a process by which a homogeneous solution at supercritical conditions is sprayed through an expansion nozzle to atmospheric conditions. The resultant change in phase leads to the precipitation of the solute materials. The production of extremely small particles (<50 nm) have been predicted but rarely demonstrated. Typically, particle growth occurs to form larger (~1 μm) particles. A novel adaptation was developed, dubbed RESAS (Rapid Expansion from Supercritical to Aqueous Solution), wherein the expansion is conducted within an aqueous environment. The aqueous phase can contain surfactant or lipid stabilizers to capture and preserve submicron particles of water-insoluble drug actives in the form of a suspension. / text
80

Synthesis and characterization of new organic electrically conducting polymers : part II: Direct carboxylation of sulfolene : part III: Effect of water on PTC systems : part IV: Mechanism of Phase transfer catalytic N-alkylation reactions

Berkner, Joachim Ernst 12 1900 (has links)
No description available.

Page generated in 0.0236 seconds