1 |
BUFFERS AND BIOCHAR: INFLUENCES ON SURFACE WATER QUALITY IN AGRICULTURAL SYSTEMSSweet, Audrey 01 May 2015 (has links)
Agricultural runoff is a major non-point source pollutant in the Midwest and has been documented as a significant contributor to nutrient loads in the Mississippi River and subsequent hypoxic conditions in the Gulf of Mexico. In an attempt to minimize eutrophication, researchers have been collaborating with farmers to improve best management practices targeting nutrient retention. Over the past four decades riparian buffers have proven effective in retaining nutrients and sediment from agricultural runoff. We hypothesize that the addition of biochar to vegetated buffers can further improve nutrient attenuation by enhancing nutrient adsorption and cycling soil physical, chemical, and biological properties. In June 2012, fifteen flumes were established adjacent to fifteen existing flumes that were installed in 2008 for a related study at Southern Illinois University's farms. Each flume was either vegetated and/or amended with one of ten treatments and replicated three times: 1) giant cane (Arundinaria gigantea (Walt.) Muhl) established in 2008; 2) Kentucky bluegrass (Poa pratensis L.); 3) orchardgrass (Dactylis glomerata L.); 4) giant cane and compost (i.e., horse manure and mushroom compost); 5) biochar (i.e., pine and oak feedstock pyrolyzed between 450 °C and 650 °C.); 6) biochar and giant cane; 7) biochar, giant cane, and compost; 8) corn; 9) volunteer herbaceous species; and 10) a non-amended, non-vegetated control. Soil samples were collected prior to the application of soil amendments and nutrients were assessed annually. Surface runoff samples were collected from significant rain events (i.e., precipitation > 2.5 cm) and analyzed for nutrient and sediment levels. Data indicate that various combinations of biochar, compost, and giant cane were successful at reducing the frequency of surface runoff events as well as reducing concentrations of NO3- and NH4+ in agricultural surface runoff. Concentrations of dissolved reactive phosphorus (DRP) were greatly reduced when biochar and giant cane were present in the buffer without the addition of compost. Total phosphorus (TP) concentrations were lowest for the established giant cane treatment. There were no significant differences in the concentrations of total suspended solids (TSS) among the various buffer treatments. Data from this study are promising for the incorporation of biochar, compost, and giant cane into vegetated buffers to reduce the concentration of nutrients in agricultural surface runoff.
|
2 |
Nitrogen Regime Influence on Nutrient and Sediment Surface Runoff During Vegetative Establishment of BermudagrassBeasley, Jeffrey S. 07 May 2002 (has links)
Bermudagrass (Cynodon dactylon (L.) Pers.) is a popular turfgrass used throughout the Southeast. Bermudagrass is established primarily as sprigs on large acreage sites. Currently, the industry standard practice (ISP) of fertilization during bermudagrass sprig establishment is 48.8 kg N ha⁻¹ wk⁻¹. This fertilizer rate can be excessive on morphologically immature sprigs in the initial weeks of establishment, thus making the possibility of offsite surface runoff N events more likely. Two experiments were conducted in 2000 and 2001 where sprigs were established at 2, 4, 6, 8, and 10 weeks prior to applying simulated rainfall (WPRS) following N fertilization rates of the ISP or a lower initial N (LIN) rate of 12.2 kg N ha⁻¹ wk⁻¹ the first four weeks and then 48.8 kg N ha⁻¹ wk⁻¹ until full establishment. At the tenth week all treatments were subjected to rainfall simulation at 63.5 mm hr⁻¹. Once surface runoff was induced, rainfall continued for thirty minutes during which time runoff samples were taken every five minutes and analyzed for sediment losses, N concentrations in the nitrate and ammonium forms, and phosphorus losses as dissolved reactive P (DRP). Experimental results indicate an ability to curb N losses through surface runoff during the initial weeks of sprig establishment following the LIN with only modest delays in sprig establishment. Sprigs established for the same time period, under the ISP or LIN, were very similar in growth, release of surface runoff, and sediment losses during runoff events. / Master of Science
|
3 |
Improved Hydrologic Modeling for Characterizing Variable Contributing Areas and Threshold-Controlled Overland Flow in Depression-Dominated AreasZeng, Lan January 2020 (has links)
Surface depressions are important topographic features, which affect overland flow, infiltration, and other hydrologic processes. Specifically, depressions undergo filling-spilling-merging-splitting processes under natural rainfall conditions, featuring discontinuity in hydrologic connectivity and variability in contributing area. However, a constant and time-invariant contributing area is often assumed in traditional hydrologic modeling, and consequently, the real threshold-controlled overland flow dynamics cannot be captured. The overall goal of this dissertation research is to improve hydrologic modeling, especially for depression-dominated areas, by quantifying the hydrologic effects of depressions. The specific objectives are to analyze the hydrotopographic characteristics of depressions and identify the intrinsic relationships of hydrologic variables, develop new modeling methods to simulate the depression-oriented dynamics in overland flow and variations in contributing area, and reveal the influence of spatially distributed depressions on the surface runoff generation and propagation processes. To achieve these objectives, three studies were conducted: (1) the frequency distribution of depression storage capacities was determined and a puddle-based unit (PBU)-probability distribution model (PDM) was developed; (2) the intrinsic changing patterns of contributing area and depression storage were identified, based on which a new depression-oriented variable contributing area (D-VCA) model was developed; and (3) a modified D-VCA (MD-VCA) model was further developed by introducing a depressional time-area zone scheme and a new variable contributing area-based surface runoff routing technique to account for the spatial distribution of depressions. These three models (PBU-PDM, D-VCA, and MD-VCA) were evaluated through the applications to depression-dominated watersheds in North Dakota, and simulation results demonstrated their capabilities in simulating the variations of contributing areas and threshold-controlled overland flow dynamics. In addition, these three studies emphasized the important roles of depressions in the evolution of contributing areas as well as surface runoff generation and propagation. Without considering the spatial distribution of depressions, the formation of contributing area and the timing and quantity of runoff contributions cannot be characterized.
|
4 |
Effects of land-cover - land-use on water quality within the Kuils - Eerste River catchmentChingombe, Wisemen January 2012 (has links)
<p><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">The most significant human impacts on the hydrological system are due to land-use change. The conversion of land to agricultural, mining, industrial, or residential uses significantly alters the hydrological characteristics of the land surface and modifies pathways and rates of water flow. If this occurs over large or critical areas of a catchment, it can have significant short and long-term impacts, on the quality of water. While there are methods available to quantify the pollutants in surface water, methods of linking non-point source pollution to water quality at catchment scale are lacking. Therefore, the research presented in this thesis investigated modelling techniques to estimate the effect of land-cover type on water quality. The main goal of the study was to contribute towards improving the understanding of how different land-covers in an urbanizing catchment affect surface water quality. The aim of the research presented in this thesis was to explain how the quality of surface runoff varies on different land-cover types and to provide guidelines for minimizing water pollution that may be occurring in the Kuils-Eerste River catchment. The research objectives were / (1) to establish types and spatial distribution of land-cover types within the Kuils-Eerste River catchment, (2) to establish water quality characteristics of surface runoff from specific land-cover types at the experimental plot level, (3) to establish the contribution of each land-cover type to pollutant loads at the catchment scale.<span style="mso-spacerun:yes"> </span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">Land-cover characteristics and water quality were investigated using GIS and Remote Sensing tools. The application of these tools resulted in the development of a land-cover map with 36 land classifications covering the whole catchment. Land-cover in the catchment is predominantly agricultural with vineyards and grassland covering the northern section of the catchment. Vineyards occupy over 35% of the total area followed by fynbos (indigenous vegetation) (12.5 %), open hard rock area (5.8 %), riparian forest (5.2 %), mountain forest<span style="mso-spacerun:yes">  /   / </span>(5 %), dense scrub (4.4 %), and improved grassland (3.6 %). The residential area covers about 14 %. Roads cover 3.4 % of the total area. </span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">Surface runoff is responsible for the transportation of large quantities of pollutants that affect the quality of water in the Kuils-Eerste River catchment. The different land-cover types and the distribution and concentration levels of the pollutants are not uniform. Experimental work was conducted at plot scale to understand whether land-cover types differed in their contributions to the concentration of water quality attributes emerging from them.<span style="color:black"> Four plots each with a length of 10 m to 12 m and 5 m width were set up. Plot I was set up on open grassland, Plot II represented the vineyards, Plot III covered the mountain forests, and Plot IV represented the fynbos land-cover.</span> Soil samples analyzed from the experimental plots fell in the category of sandy soil (Sa) with the top layer of Plot IV (fynbos) having loamy sand (LmSa). The soil particle sizes range between fine sand (59.1 % and 78.9 %) to coarse sand (between 7 % and 22 %). The content of clay and silt was between 0.2 % and 2.4 %. Medium sand was between 10.7 % and 17.6 %. In terms of vertical distribution of the particle sizes, a general decrease with respect to the size of particles was noted from the top layer (15 cm) to the bottom layer (30 cm) for all categories of the particle sizes. There was variation in particle size with depth and location within the experimental plots.</span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">Two primary methods of collecting water samples were used / grab sampling and composite sampling. The quality of water as represented by the samples collected during storm events during the rainfall season of 2006 and 2007 was<span style="mso-spacerun:yes">  / </span>used to establish <span style="mso-spacerun:yes">  / </span>water quality characteristics for the different land-cover types. The concentration of total average suspended solids was highest in the following land-cover types, cemeteries (5.06 mg L<sup>-1</sup>), arterial roads/main roads (3.94 mg L<sup>-1</sup>), low density residential informal squatter camps (3.21 mg L<sup>-1</sup>) and medium density residential informal townships (3.21 mg L<sup>-1</sup>). Chloride concentrations were high on the following land-cover types, recreation grass/ golf course (2.61 mg L<sup>-1</sup>), open area/barren land (1.59 mg L<sup>-1</sup>), and improved grassland/vegetation crop (1.57 mg L<sup>-1</sup>). The event mean concentration (EMC) values for NO<sub>3</sub>-N were high on commercial mercantile (6 mg L<sup>-1</sup>) and water channel (5 mg L<sup>-1</sup>). The total phosphorus concentration mean values recorded high values on improved grassland/vegetation crop (3.78 mg L<sup>-1</sup>), medium density residential informal townships (3mgL<sup>-1</sup>) and low density residential informal squatter camps (3 mg L<sup>-1</sup>). Surface runoff may also contribute soil particles into rivers during rainfall events, particularly from areas of disturbed soil, for example areas where market gardening is taking place. The study found that different land cover types contributed differently to nonpoint source pollution. </span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">A GIS model was used to estimate the diffuse pollution of five pollutants (chloride, phosphorus, TSS, nitrogen and NO<sub>3</sub>-N) in response to land cover variation using water quality data. The GIS model linked land cover information to diffuse nutrient signatures in response to surface runoff using the Curve Number method and EMC data were developed. Two models (RINSPE and N-SPECT) were used to estimate nonpoint source pollution using various GIS databases. The outputs from the GIS-based model were compared with recommended water quality standards. It was found that the RINSPE model gave accurate results in cases where NPS pollution dominate the total pollutant inputs over a given land cover type. However, the N-SPECT model simulations were too uncertain in cases where there were large numbers of land cover types with diverse NPS pollution load. All land-cover types with concentration values above the recommended national water quality standard were considered as areas that needed measures to mitigate the adverse effects of nonpoint pollution. </span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">The expansion of urban areas and agricultural land has a direct effect on land cover types within the catchment. The land cover changes have adverse effect which has a potential to contribute to pollution. </span></span><!--[if gte mso 9]><xml>
<w:WordDocument>
<w:View>Normal</w:View>
<w:Zoom>0</w:Zoom>
<w:TrackMoves />
<w:TrackFormatting />
<w:PunctuationKerning />
<w:ValidateAgainstSchemas />
<w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
<w:IgnoreMixedContent>false</w:IgnoreMixedContent>
<w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
<w:DoNotPromoteQF />
<w:LidThemeOther>EN-ZA</w:LidThemeOther>
<w:LidThemeAsian>X-NONE</w:LidThemeAsian>
<w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
<w:Compatibility>
<w:BreakWrappedTables />
<w:SnapToGridInCell />
<w:WrapTextWithPunct />
<w:UseAsianBreakRules />
<w:DontGrowAutofit />
<w:SplitPgBreakAndParaMark />
<w:EnableOpenTypeKerning />
<w:DontFlipMirrorIndents />
<w:OverrideTableStyleHps />
</w:Compatibility>
<m:mathPr>
<m:mathFont m:val="Cambria Math" />
<m:brkBin m:val="before" />
<m:brkBinSub m:val="- / -" />
<m:smallFrac m:val="off" />
<m:dispDef />
<m:lMargin m:val="0" />
<m:rMargin m:val="0" />
<m:defJc m:val="centerGroup" />
<m:wrapIndent m:val="1440" />
<m:intLim m:val="subSup" />
<m:naryLim m:val="undOvr" />
</m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
DefSemiHidden="true" DefQFormat="false" DefPriority="99"
LatentStyleCount="267">
<w:LsdException Locked="false" Priority="0" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Normal" />
<w:LsdException Locked="false" Priority="9" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="heading 1" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9" />
<w:LsdException Locked="false" Priority="39" Name="toc 1" />
<w:LsdException Locked="false" Priority="39" Name="toc 2" />
<w:LsdException Locked="false" Priority="39" Name="toc 3" />
<w:LsdException Locked="false" Priority="39" Name="toc 4" />
<w:LsdException Locked="false" Priority="39" Name="toc 5" />
<w:LsdException Locked="false" Priority="39" Name="toc 6" />
<w:LsdException Locked="false" Priority="39" Name="toc 7" />
<w:LsdException Locked="false" Priority="39" Name="toc 8" />
<w:LsdException Locked="false" Priority="39" Name="toc 9" />
<w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption" />
<w:LsdException Locked="false" Priority="10" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Title" />
<w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font" />
<w:LsdException Locked="false" Priority="11" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtitle" />
<w:LsdException Locked="false" Priority="22" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Strong" />
<w:LsdException Locked="false" Priority="20" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Emphasis" />
<w:LsdException Locked="false" Priority="59" SemiHidden="false"
UnhideWhenUsed="false" Name="Table Grid" />
<w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text" />
<w:LsdException Locked="false" Priority="1" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="No Spacing" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 1" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 1" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 1" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 1" />
<w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision" />
<w:LsdException Locked="false" Priority="34" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="List Paragraph" />
<w:LsdException Locked="false" Priority="29" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Quote" />
<w:LsdException Locked="false" Priority="30" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Quote" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 1" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 1" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 1" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 1" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 1" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 2" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 2" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 2" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 2" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 2" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 2" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 2" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 2" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 2" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 3" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 3" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 3" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 3" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 3" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 3" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 3" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 3" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 3" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 4" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 4" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 4" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 4" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 4" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 4" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 4" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 4" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 4" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 5" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 5" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 5" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 5" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 5" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 5" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 5" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 5" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 5" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 6" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 6" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 6" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 6" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 6" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 6" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 6" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 6" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 6" />
<w:LsdException Locked="false" Priority="19" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis" />
<w:LsdException Locked="false" Priority="21" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis" />
<w:LsdException Locked="false" Priority="31" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference" />
<w:LsdException Locked="false" Priority="32" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Reference" />
<w:LsdException Locked="false" Priority="33" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Book Title" />
<w:LsdException Locked="false" Priority="37" Name="Bibliography" />
<w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading" />
</w:LatentStyles>
</xml><![endif]--><!--[if gte mso 10]>
<style>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal" / mso-tstyle-rowband-size:0 / mso-tstyle-colband-size:0 / mso-style-noshow:yes / mso-style-priority:99 / mso-style-parent:"" / mso-padding-alt:0cm 5.4pt 0cm 5.4pt / mso-para-margin:0cm / mso-para-margin-bottom:.0001pt / mso-pagination:widow-orphan / font-size:10.0pt / font-family:"Times New Roman","serif" / }
</style>
<![endif]--></p>
|
5 |
Water budgets and cave recharge on juniper rangelands in the Edwards PlateauGregory, Lucas Frank 16 August 2006 (has links)
Increasing demand for water supplies in semi-arid regions, such as San Antonio,
has sparked an interest in potential recharge management through brush control. Two
shallow caves under woody plant cover in northern Bexar County, Texas were chosen as
study sites where a detailed water budget would be developed. The Headquarters Cave
site measures natural rainfall and cave recharge while the Bunny Hole site is
instrumented to measure throughfall, stemflow, surface runoff, and cave recharge. Large
scale rainfall simulation was used at Bunny Hole to apply water directly above the cave
footprint allowing us to determine how recharge differs between natural and simulated
rainfall events. Under natural conditions, Headquarters Cave recharged 15.05% of the
annual rainfall while Bunny Hole received 4.28%. Natural canopy throughfall measured
59.96% of the water budget; stemflow accounted for 0.48% and canopy interception was
39.56%; no surface runoff was measured. Rainfall simulations conducted at Bunny Hole
resulted in an average of 74.5% throughfall, 5.3% stemflow, 20.2% canopy interception,
2.8% surface runoff, and 6.9% cave recharge; simulation intensities were typically
higher than natural event intensities. General water budgets across the Edwards Plateau have concluded that evapotranspiration represents 65% of total annual rainfall while
percolation and storage accounts for 30% and the remaining 5% is runoff. These studies
have been focused on broad water budget parameters while this study looks at more
detailed components. No other study to date has been able to combine throughfall,
stemflow, surface runoff, and vertical recharge monitoring to quantify the water budget
in the Edwards Plateau; these parameters are instrumental in determining a detailed
water budget in juniper rangelands. Results from this study illustrate the significance of
all aspects of the water budget and are the first to yield a firm measurement of actual
upland recharge.
|
6 |
Effects of land-cover - land-use on water quality within the Kuils - Eerste River catchmentChingombe, Wisemen January 2012 (has links)
<p><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">The most significant human impacts on the hydrological system are due to land-use change. The conversion of land to agricultural, mining, industrial, or residential uses significantly alters the hydrological characteristics of the land surface and modifies pathways and rates of water flow. If this occurs over large or critical areas of a catchment, it can have significant short and long-term impacts, on the quality of water. While there are methods available to quantify the pollutants in surface water, methods of linking non-point source pollution to water quality at catchment scale are lacking. Therefore, the research presented in this thesis investigated modelling techniques to estimate the effect of land-cover type on water quality. The main goal of the study was to contribute towards improving the understanding of how different land-covers in an urbanizing catchment affect surface water quality. The aim of the research presented in this thesis was to explain how the quality of surface runoff varies on different land-cover types and to provide guidelines for minimizing water pollution that may be occurring in the Kuils-Eerste River catchment. The research objectives were / (1) to establish types and spatial distribution of land-cover types within the Kuils-Eerste River catchment, (2) to establish water quality characteristics of surface runoff from specific land-cover types at the experimental plot level, (3) to establish the contribution of each land-cover type to pollutant loads at the catchment scale.<span style="mso-spacerun:yes"> </span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">Land-cover characteristics and water quality were investigated using GIS and Remote Sensing tools. The application of these tools resulted in the development of a land-cover map with 36 land classifications covering the whole catchment. Land-cover in the catchment is predominantly agricultural with vineyards and grassland covering the northern section of the catchment. Vineyards occupy over 35% of the total area followed by fynbos (indigenous vegetation) (12.5 %), open hard rock area (5.8 %), riparian forest (5.2 %), mountain forest<span style="mso-spacerun:yes">  /   / </span>(5 %), dense scrub (4.4 %), and improved grassland (3.6 %). The residential area covers about 14 %. Roads cover 3.4 % of the total area. </span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">Surface runoff is responsible for the transportation of large quantities of pollutants that affect the quality of water in the Kuils-Eerste River catchment. The different land-cover types and the distribution and concentration levels of the pollutants are not uniform. Experimental work was conducted at plot scale to understand whether land-cover types differed in their contributions to the concentration of water quality attributes emerging from them.<span style="color:black"> Four plots each with a length of 10 m to 12 m and 5 m width were set up. Plot I was set up on open grassland, Plot II represented the vineyards, Plot III covered the mountain forests, and Plot IV represented the fynbos land-cover.</span> Soil samples analyzed from the experimental plots fell in the category of sandy soil (Sa) with the top layer of Plot IV (fynbos) having loamy sand (LmSa). The soil particle sizes range between fine sand (59.1 % and 78.9 %) to coarse sand (between 7 % and 22 %). The content of clay and silt was between 0.2 % and 2.4 %. Medium sand was between 10.7 % and 17.6 %. In terms of vertical distribution of the particle sizes, a general decrease with respect to the size of particles was noted from the top layer (15 cm) to the bottom layer (30 cm) for all categories of the particle sizes. There was variation in particle size with depth and location within the experimental plots.</span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">Two primary methods of collecting water samples were used / grab sampling and composite sampling. The quality of water as represented by the samples collected during storm events during the rainfall season of 2006 and 2007 was<span style="mso-spacerun:yes">  / </span>used to establish <span style="mso-spacerun:yes">  / </span>water quality characteristics for the different land-cover types. The concentration of total average suspended solids was highest in the following land-cover types, cemeteries (5.06 mg L<sup>-1</sup>), arterial roads/main roads (3.94 mg L<sup>-1</sup>), low density residential informal squatter camps (3.21 mg L<sup>-1</sup>) and medium density residential informal townships (3.21 mg L<sup>-1</sup>). Chloride concentrations were high on the following land-cover types, recreation grass/ golf course (2.61 mg L<sup>-1</sup>), open area/barren land (1.59 mg L<sup>-1</sup>), and improved grassland/vegetation crop (1.57 mg L<sup>-1</sup>). The event mean concentration (EMC) values for NO<sub>3</sub>-N were high on commercial mercantile (6 mg L<sup>-1</sup>) and water channel (5 mg L<sup>-1</sup>). The total phosphorus concentration mean values recorded high values on improved grassland/vegetation crop (3.78 mg L<sup>-1</sup>), medium density residential informal townships (3mgL<sup>-1</sup>) and low density residential informal squatter camps (3 mg L<sup>-1</sup>). Surface runoff may also contribute soil particles into rivers during rainfall events, particularly from areas of disturbed soil, for example areas where market gardening is taking place. The study found that different land cover types contributed differently to nonpoint source pollution. </span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">A GIS model was used to estimate the diffuse pollution of five pollutants (chloride, phosphorus, TSS, nitrogen and NO<sub>3</sub>-N) in response to land cover variation using water quality data. The GIS model linked land cover information to diffuse nutrient signatures in response to surface runoff using the Curve Number method and EMC data were developed. Two models (RINSPE and N-SPECT) were used to estimate nonpoint source pollution using various GIS databases. The outputs from the GIS-based model were compared with recommended water quality standards. It was found that the RINSPE model gave accurate results in cases where NPS pollution dominate the total pollutant inputs over a given land cover type. However, the N-SPECT model simulations were too uncertain in cases where there were large numbers of land cover types with diverse NPS pollution load. All land-cover types with concentration values above the recommended national water quality standard were considered as areas that needed measures to mitigate the adverse effects of nonpoint pollution. </span><span lang="EN-GB" style="font-size:
12.0pt / line-height:150% / font-family:" / Times New Roman" / ," / serif" / ">The expansion of urban areas and agricultural land has a direct effect on land cover types within the catchment. The land cover changes have adverse effect which has a potential to contribute to pollution. </span></span><!--[if gte mso 9]><xml>
<w:WordDocument>
<w:View>Normal</w:View>
<w:Zoom>0</w:Zoom>
<w:TrackMoves />
<w:TrackFormatting />
<w:PunctuationKerning />
<w:ValidateAgainstSchemas />
<w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
<w:IgnoreMixedContent>false</w:IgnoreMixedContent>
<w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
<w:DoNotPromoteQF />
<w:LidThemeOther>EN-ZA</w:LidThemeOther>
<w:LidThemeAsian>X-NONE</w:LidThemeAsian>
<w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
<w:Compatibility>
<w:BreakWrappedTables />
<w:SnapToGridInCell />
<w:WrapTextWithPunct />
<w:UseAsianBreakRules />
<w:DontGrowAutofit />
<w:SplitPgBreakAndParaMark />
<w:EnableOpenTypeKerning />
<w:DontFlipMirrorIndents />
<w:OverrideTableStyleHps />
</w:Compatibility>
<m:mathPr>
<m:mathFont m:val="Cambria Math" />
<m:brkBin m:val="before" />
<m:brkBinSub m:val="- / -" />
<m:smallFrac m:val="off" />
<m:dispDef />
<m:lMargin m:val="0" />
<m:rMargin m:val="0" />
<m:defJc m:val="centerGroup" />
<m:wrapIndent m:val="1440" />
<m:intLim m:val="subSup" />
<m:naryLim m:val="undOvr" />
</m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
DefSemiHidden="true" DefQFormat="false" DefPriority="99"
LatentStyleCount="267">
<w:LsdException Locked="false" Priority="0" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Normal" />
<w:LsdException Locked="false" Priority="9" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="heading 1" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8" />
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9" />
<w:LsdException Locked="false" Priority="39" Name="toc 1" />
<w:LsdException Locked="false" Priority="39" Name="toc 2" />
<w:LsdException Locked="false" Priority="39" Name="toc 3" />
<w:LsdException Locked="false" Priority="39" Name="toc 4" />
<w:LsdException Locked="false" Priority="39" Name="toc 5" />
<w:LsdException Locked="false" Priority="39" Name="toc 6" />
<w:LsdException Locked="false" Priority="39" Name="toc 7" />
<w:LsdException Locked="false" Priority="39" Name="toc 8" />
<w:LsdException Locked="false" Priority="39" Name="toc 9" />
<w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption" />
<w:LsdException Locked="false" Priority="10" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Title" />
<w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font" />
<w:LsdException Locked="false" Priority="11" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtitle" />
<w:LsdException Locked="false" Priority="22" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Strong" />
<w:LsdException Locked="false" Priority="20" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Emphasis" />
<w:LsdException Locked="false" Priority="59" SemiHidden="false"
UnhideWhenUsed="false" Name="Table Grid" />
<w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text" />
<w:LsdException Locked="false" Priority="1" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="No Spacing" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 1" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 1" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 1" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 1" />
<w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision" />
<w:LsdException Locked="false" Priority="34" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="List Paragraph" />
<w:LsdException Locked="false" Priority="29" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Quote" />
<w:LsdException Locked="false" Priority="30" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Quote" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 1" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 1" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 1" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 1" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 1" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 2" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 2" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 2" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 2" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 2" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 2" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 2" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 2" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 2" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 3" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 3" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 3" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 3" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 3" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 3" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 3" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 3" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 3" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 4" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 4" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 4" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 4" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 4" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 4" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 4" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 4" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 4" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 5" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 5" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 5" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 5" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 5" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 5" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 5" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 5" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 5" />
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 6" />
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 6" />
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 6" />
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6" />
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6" />
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 6" />
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 6" />
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6" />
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6" />
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6" />
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 6" />
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 6" />
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 6" />
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 6" />
<w:LsdException Locked="false" Priority="19" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis" />
<w:LsdException Locked="false" Priority="21" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis" />
<w:LsdException Locked="false" Priority="31" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference" />
<w:LsdException Locked="false" Priority="32" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Reference" />
<w:LsdException Locked="false" Priority="33" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Book Title" />
<w:LsdException Locked="false" Priority="37" Name="Bibliography" />
<w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading" />
</w:LatentStyles>
</xml><![endif]--><!--[if gte mso 10]>
<style>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal" / mso-tstyle-rowband-size:0 / mso-tstyle-colband-size:0 / mso-style-noshow:yes / mso-style-priority:99 / mso-style-parent:"" / mso-padding-alt:0cm 5.4pt 0cm 5.4pt / mso-para-margin:0cm / mso-para-margin-bottom:.0001pt / mso-pagination:widow-orphan / font-size:10.0pt / font-family:"Times New Roman","serif" / }
</style>
<![endif]--></p>
|
7 |
Effects of land-cover - land-use on water quality within the kuils - Eerste River CatchmentChingombe, Wisemen January 2012 (has links)
Philosophiae Doctor - PhD / The most significant human impacts on the hydrological system are due to land-use
change. The conversion of land to agricultural, mining, industrial, or residential uses
significantly alters the hydrological characteristics of the land surface and modifies
pathways and rates of water flow. If this occurs over large or critical areas of a catchment, it can have significant short and long-term impacts, on the quality of water.
While there are methods available to quantify the pollutants in surface water, methods of linking non-point source pollution to water quality at catchment scale are lacking. Therefore, the research presented in this thesis investigated modelling techniques
to estimate the effect of land-cover type on water quality. The main goal of the study was to contribute towards improving the understanding of how different landcovers
in an urbanizing catchment affect surface water quality. The aim of the research presented in this thesis was to explain how the quality of surface runoff varies on different land-cover types and to provide guidelines for minimizing water pollution
that may be occurring in the Kuils-Eerste River catchment. The research objectives
were; (1) to establish types and spatial distribution of land-cover types within the Kuils-Eerste River catchment, (2) to establish water quality characteristics of surface runoff from specific land-cover types at the experimental plot level, (3) to establish the contribution of each land-cover type to pollutant loads at the catchment scale. Land-cover characteristics and water quality were investigated using GIS and Remote Sensing tools. The application of these tools resulted in the development of a landcover
map with 36 land classifications covering the whole catchment. Land-cover in the catchment is predominantly agricultural with vineyards and grassland covering the northern section of the catchment. Vineyards occupy over 35% of the total area followed by fynbos (indigenous vegetation) (12.5 %), open hard rock area (5.8 %), riparian forest (5.2 %), mountain forest (5 %), dense scrub (4.4 %), and improved
grassland (3.6 %). The residential area covers about 14 %. Roads cover 3.4 % of the
total area. Surface runoff is responsible for the transportation of large quantities of pollutants that affect the quality of water in the Kuils-Eerste River catchment. The different land-cover types and the distribution and concentration levels of the pollutants are not uniform. Experimental work was conducted at plot scale to understand whether landcover types differed in their contributions to the concentration of water quality attributes emerging from them. Four plots each with a length of 10 m to 12 m and 5 m
width were set up. Plot I was set up on open grassland, Plot II represented the neyards,
Plot III covered the mountain forests, and Plot IV represented the fynbos landcover.
Soil samples analyzed from the experimental plots fell in the category of sandy soil (Sa) with the top layer of Plot IV (fynbos) having loamy sand (LmSa). The soil particle sizes range between fine sand (59.1 % and 78.9 %) to coarse sand (between 7 % and 22 %). The content of clay and silt was between 0.2 % and 2.4 %. Medium sand was between 10.7 % and 17.6 %. In terms of vertical distribution of the particle sizes, a general decrease with respect to the size of particles was noted from the top layer (15 cm) to the bottom layer (30 cm) for all categories of the particle sizes. There was variation in particle size with depth and location within the experimental plots. Two primary methods of collecting water samples were used; grab sampling and composite sampling. The quality of water as represented by the samples collected during storm events during the rainfall season of 2006 and 2007 was used to establish water quality characteristics for the different land-cover types. The concentration of total average suspended solids was highest in the following land-cover types, cemeteries (5.06 mg L-1), arterial roads/main roads (3.94 mg L-1), low density residential informal squatter camps (3.21 mg L-1) and medium density residential informal townships (3.21 mg L-1). Chloride concentrations were high on the following land-cover types, recreation grass/ golf course (2.61 mg L-1), open area/barren land (1.59 mg L- 1), and improved grassland/vegetation crop (1.57 mg L-1). The event mean concentration (EMC) values for NO3-N were high on commercial mercantile (6 mg L-1) and water channel (5 mg L-1). The total phosphorus concentration mean values recorded high values on improved grassland/vegetation crop (3.78 mg L-1), medium density residential informal townships (3mgL-1) and low density residential informal squatter camps (3 mg L-1). Surface runoff may also contribute soil particles into rivers during rainfall events, particularly from areas of disturbed soil, for example areas where market gardening is taking place. The study found that different land cover types contributed differently to nonpoint source pollution. GIS model was used to estimate the diffuse pollution of five pollutants (chloride, phosphorus, TSS, nitrogen and NO3-N) in response to land cover variation using water quality data. The GIS model linked land cover information to diffuse nutrient signatures in response to surface runoff using the Curve Number method and EMC data were developed. Two models (RINSPE and N-SPECT) were used to estimate nonpoint source pollution using various GIS databases. The outputs from the GIS-based model were compared with recommended water quality standards. It was found that the RINSPE model gave accurate results in cases where NPS pollution dominate the total pollutant inputs over a given land cover type. However, the N-SPECT model simulations were too uncertain in cases where there were large numbers of land cover types with diverse NPS pollution load. All land-cover types with concentration values above the recommended national water quality standard were considered as areas that needed measures to mitigate the adverse effects of nonpoint pollution.
The expansion of urban areas and agricultural land has a direct effect on land cover
types within the catchment. The land cover changes have adverse effect which has a
potential to contribute to pollution.
|
8 |
Hydrologic and Sedimentary Aspects of the "Schei" Sandur, Ellesmere Island, N.W.T. / The "Schei" SandurBennett, Bruce George 04 1900 (has links)
During the summers of 1973 anrd 1974 processes and related responses operating on a small High Arctic sandur (basin area 91 km²)
were studied. Several aspects related to the sandur were investigated,
including the hydrologic regime of surface runoff, channel hydraulic
conditions, sediment transport, and the morphology of the channels
and sandur surface.
Summer climatic conditions strongly affected surface runoff
due to their influence on snowmelt, qlacial melt, and summer precipitation,
There was a noticeable diurnal rhythm in streamflow in response
to snowmelt and glacial melt. The influences of ice blockcage effects
on streamflow were also observable. A shallow active layer resulted in
a rapid response of surface runoff to snowmelt, glacial melt, and
rainfall sources.
These aspects of the hydrologic regime strongly affected
the hydraulic conditions of the streams. The main hydraulic adjustment
was produced by changes in velocity which led to rapid changes in flow
resistance and resulted in large variations in the rates of sediment
transport. Estimates of the stream load in the 1974 summer confirmed
that the bulk of the sediment was carried as bedload.
Channel bar forms which reflected hydraulic conditions
changed considerably over a summer period. On a long term basis,
the form of the channel longitudinal profile indicated an adjustment
to downstream hydraulic conditions while the surface morphology and
sediment distribution over the sandur revealerl the two-dimensional
variations in channel processes. / Thesis / Bachelor of Arts (BA)
|
9 |
Phosphorus runoff potential of different sources of manure applied to fescue pastures in VirginiaHollmann, Marcus 25 September 2006 (has links)
Version 2.0 of the P Index for Virginia uses coefficients describing the risk of P losses for different manure sources applied to fescue pasture that have not been verified on Virginian soils. In the first experiment, four sources of manure (dairy slurry, piggery waste, beef solids, and poultry litter) and triple superphosphate (TSP) were applied iso-nitrogenously to pasture plots (1.5 m2, 10% slope) with 31 ppm Mehlich 1-P soil test. The P treatments were amended in spring at a rate of 62.7 kg P2O5/ha and compared against a no-P-amended control. Forage was cut and removed monthly (n=5). Five rainfall simulations (65-70 mm/h) were conducted at three occasions (June, August, and October); the soil moisture was below field capacity at two events. Continuous surface runoff was collected for 30 min from each plot in accordance with the protocol of the National P Research Project. Data were statistically analyzed using Proc Mixed of SAS with rain event or cutting used as the repeated measure. Runoff concentrations of total P (TP) and dissolved reactive P (DRP) did not vary by treatment. The control showed less TP (0.126 mg/l) and DRP (0.068 mg/l) concentration than all other treatments (ranges 0.190 to 0.249 mg TP/l and 0.129 to 0.182 mg DRP/l) in runoff during the first event (40 d after treatment). The control had the lowest (0.118 mg/l) and TSP the highest (0.248 mg/l) TP concentration during the second event 24 h later. Samples taken at 5-min intervals during the second simulation showed a significant decrease in TP and DRP concentrations over time for all treatments but the control. Treatments did not affect edge-of-the-field losses of TP, DRP, or TKN. Soil test P and water-extractable P measured after the fifth and final rainfall simulation did not correlate to P concentrations in runoff. Forage yields and their N and P concentrations were not impacted. Results indicated a decreasing impact of manure, spring-applied to fescue pasture, on runoff P concentrations throughout the season. Highest TP concentrations were found during the first pair of simulated rainfalls from the TSP treatment. In a second experiment, indoor runoff boxes were used to simulate management intensive rotational grazing. Commercial fertilizer TSP and manure application increased runoff TP concentration from 0.146 mg/l to 0.245 mg/l and DRP concentration from 0.105 mg/l to 0.183 mg/l. Runoff P did not differ between organic or inorganic P treatments, possibly due to the small area of the boxes. However, application of manure increased runoff TKN overall, with a linear decrease as the time increased between application and rain simulation. / Master of Science
|
10 |
O impacto do uso do solo na contaminação por agrotóxicos das águas superficiais de abastecimento público / The impact of land use in the contamination of the superficial waters of public supply by pesticidesVeiga, Denise Piccirillo Barbosa da 05 May 2017 (has links)
Introdução: A qualidade e quantidade das águas superficiais estão diretamente relacionadas com as atividades econômicas presentes nas bacias hidrográficas e seus níveis de preservação. O aumento no uso de agrotóxicos pode contribuir para a contaminação do solo e da água, sobretudo em bacias hidrográficas agrícolas. A prevenção da contaminação dos mananciais é essencial para garantir a qualidade da água e diminuir os riscos à saúde humana, para tanto é preciso identificar como o uso e a ocupação do solo impactam os recursos hídricos, sua qualidade e seu equilíbrio hidrológico. Objetivo: Caracterização ambiental de duas bacias de mananciais de abastecimento público de forma a identificar áreas vulneráveis quanto à contaminação de agrotóxicos. Método: Aplicação do modelo hidrológico SWAT para caracterização da bacia e para simulação do ciclo hidrológico. Divisão da bacia hidrográfica em subbacias de acordo com o predomínio da ocupação do solo. Trabalho de campo para identificação de fontes pontuais de contaminação. Resultados: Foi verificado o impacto do uso e ocupação do solo no balanço hídrico das bacias. O escoamento superficial foi um dos principais meios de contaminação dos corpos dágua e esteve relacionado a presença de vegetação. Áreas de maior preservação apresentaram menor escoamento superficial enquanto àquelas com predomínio de agricultura e de solo exposto apresentaram valores maiores. A partir desses dados foram identificadas as áreas prioritárias para melhor gestão do uso de agrotóxicos por apresentarem potencial de contaminação dos corpos dágua. Conclusão: O modelo SWAT e as ferramentas de geoprocessamento se mostraram adequadas para a caracterização do uso do solo e os resultados fornecem subsídios para melhoria das ações de vigilância da qualidade da água nos municípios / Introduction: The surface waters quality and quantity are directly related to the economic activities present in the river basins and their levels of preservation. The increase in the use of pesticides can contribute to the contamination of soil and water, especially in agricultural watersheds. Preventing the contamination of water sources is essential to guarantee water quality and reduce risks to human health. Therefore, it is necessary to identify how the land use impacts water resources, their quality and their hydrological balance. Objective: Environmental characterization of two watersheds of public supply sources in order to identify vulnerable areas for the contamination of pesticides. Method: Application of the SWAT hydrological model for basin characterization and simulation of the hydrological cycle. Division of watershed in subbasins according to the predominance of the land use. Fieldwork to identify point sources of contamination. Results: The impact of land use and occupation on the water balance of the watersheds was verified. Surface runoff was one of the main means of contamination of water bodies and was related to the presence of vegetation in the area. Areas of greater preservation presented lower surface runoff while those with predominance of agriculture and exposed soil showed higher values. Priority areas for better use of agrochemicals were identified because they present potential for contamination of water bodies. Conclusion: The SWAT model and spatial tools were adequate for the characterization of land use and the results provide subsidies for the improvement of water quality monitoring actions in municipalities
|
Page generated in 0.0371 seconds