• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 252
  • 58
  • 58
  • 56
  • 21
  • 12
  • 10
  • 9
  • 8
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • Tagged with
  • 562
  • 226
  • 180
  • 175
  • 171
  • 169
  • 148
  • 81
  • 75
  • 71
  • 68
  • 67
  • 64
  • 64
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

AN ALL-ATTRIBUTES APPROACH TO SUPERVISED LEARNING

VANCE, DANNY W. January 2006 (has links)
No description available.
262

Comparisons of Classification Methods in Efficiency and Robustness

Wang, Rui 31 August 2012 (has links)
No description available.
263

Physical Characterization of Particulate Matter Employing Support Vector Machine Aided Image Processing

Mogireddy, Kranthi Kumar Reddy 22 May 2011 (has links)
No description available.
264

Using Machine Learning for Activity Recognition in Running Exercise

Svensson, Patrik, Wendel, Erik January 2021 (has links)
Human activity recognition (HAR) is a growing area within machine learning as the possible applications are vast, especially with the growing amount of collectable sensor data as Internet of Things-devices are becoming more accessible. This project aims to contribute to HAR by developing two supervised machine learning algorithms that are able to distinguish between four different human activities. We collected data from the tri-axial accelerometer in two different smartphones while doing these activities, and put together a dataset. The algorithms that were used was a convolutional neural network (CNN) and a support vector machine (SVM), and they were applied to the dataset separately. The results show that it is possible to accurately classify the activities using the algorithms and that a short time window of 3 seconds is enough to classify the activities with an accuracy of over 99% with both algorithms. The SVM outperformed the CNN slightly. We also discuss the result and continuations of this study. / Mlinsklig aktivitetsigenkanning (HAR) lir ett vlixande omrade inom maskininllirning da de mojliga applikationerna lir stora, speciellt med den vlixande mangd insamlingsbar sensordata da Internet of Things-enheter blir mer atkomliga. Detta projekt siktar pa att bidra till HAR genom att utveckla tva algoritmer som kan urskilja mellan fyra olika mlinskliga aktiviteter. Vi samlade in data fran den treaxlade accelerometern i tva olika smarta telefoner medans dessa aktiviteter utfordes, och satte ihop ett dataset. Algoritmerna som anvlindes var ett faltande neuralt nlitverk och en stodvektormaskin, och de applicerades separat pa datasetet. Resultaten visar att det lir mojligt att med slikerhet klassificera aktiviteterna genom att anvlinda dessa algoritmer och att ett kort tidsfonster med 3 sekunder av data lir tillrlickligt for att klassificera med en slikerhet pa over 99% med bada algoritmerna. Stodvektormaskinen presterade nagot blittre an det neurala nlitverket. Vi diskuterar liven resultatet och fortsatta studier. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
265

Real Time Sorting of Plastic Recyclables Using an FPGA based SVM

House, Bryan W. 10 1900 (has links)
<p>The amount of recyclable material being processed worldwide is increasing. There is a demand for new technologies that can quickly sort these materials for maxi-mum purity while maintaining high throughput. This thesis proposes a method toautomatically sort two materials: Polycoat containers and Polyethylene terephtha-late (PET) bottles. This method utilizes a visible light camera and does not relyon Near-Infrared spectrometry. A high-speed method to automatically locate re-gions that likely contain these materials within the image and remove them from thebackground is presented. These regions are merged into whole containers and are classified as either a Polycoat container or PET bottle. This is accomplished using alinear support vector machine (SVM) trained on the histogram of pixel intensities. Anovel graph theoretic based region growing technique is proposed and experimental results are provided to characterize the system. The proposed method obtained a93% recognition rate while running in real-time on an FPGA.</p> / Master of Applied Science (MASc)
266

A Performance Predictive Model for Emergency Medicine Residents

Ariaeinejad, Ali January 2017 (has links)
Competency-based medical education (CBME) is a paradigm of assessing resident performance through well-defined tasks, objectives and milestones. A large number of data points are generated during a five-year period as a resident accomplishes the assigned tasks. However, no tool support exists to process this data for early identification of a resident-at-risk failing to achieve future milestones. In this thesis, the implementation of CBME at McMaster's Royal College Emergency Medicine residency program was studied and the development of a machine learning algorithm (MLA) to identify patterns in resident performance was reported. The adaptivity of multiple MLAs to build a tool support for monitoring residents' progress and flagging those who are in most need of assistance in the context of emergency medicine education was evaluated. / Thesis / Master of Science (MSc)
267

Cyberbullying Detection Using Weakly Supervised and Fully Supervised Learning

Abhishek, Abhinav 22 September 2022 (has links)
No description available.
268

Stock Price Movement Prediction Using Sentiment Analysis and Machine Learning

Wang, Jenny Zheng 01 June 2021 (has links) (PDF)
Stock price prediction is of strong interest but a challenging task to both researchers and investors. Recently, sentiment analysis and machine learning have been adopted in stock price movement prediction. In particular, retail investors’ sentiment from online forums has shown their power to influence the stock market. In this paper, a novel system was built to predict stock price movement for the following trading day. The system includes a web scraper, an enhanced sentiment analyzer, a machine learning engine, an evaluation module, and a recommendation module. The system can automatically select the best prediction model from four state-of-the-art machine learning models (Long Short-Term Memory, Support Vector Machine, Random Forest, and Extreme Boost Gradient Tree) based on the acquired data and the models’ performance. Moreover, stock market lexicons were created using large-scale text mining on the Yahoo Finance Conversation boards and natural language processing. Experiments using the top 30 stocks on the Yahoo users’ watchlists and a randomly selected stock from NASDAQ were performed to examine the system performance and proposed methods. The experimental results show that incorporating sentiment analysis can improve the prediction for stocks with a large daily discussion volume. Long Short-Term Memory model outperformed other machine learning models when using both price and sentiment analysis as inputs. In addition, the Extreme Boost Gradient Tree (XGBoost) model achieved the highest accuracy using the price-only feature on low-volume stocks. Last but not least, the models using the enhanced sentiment analyzer outperformed the VADER sentiment analyzer by 1.96%.
269

Machine Learning Models in Fullerene/Metallofullerene Chromatography Studies

Liu, Xiaoyang 08 August 2019 (has links)
Machine learning methods are now extensively applied in various scientific research areas to make models. Unlike regular models, machine learning based models use a data-driven approach. Machine learning algorithms can learn knowledge that are hard to be recognized, from available data. The data-driven approaches enhance the role of algorithms and computers and then accelerate the computation using alternative views. In this thesis, we explore the possibility of applying machine learning models in the prediction of chromatographic retention behaviors. Chromatographic separation is a key technique for the discovery and analysis of fullerenes. In previous studies, differential equation models have achieved great success in predictions of chromatographic retentions. However, most of the differential equation models require experimental measurements or theoretical computations for many parameters, which are not easy to obtain. Fullerenes/metallofullerenes are rigid and spherical molecules with only carbon atoms, which makes the predictions of chromatographic retention behaviors as well as other properties much simpler than other flexible molecules that have more variations on conformations. In this thesis, I propose the polarizability of a fullerene molecule is able to be estimated directly from the structures. Structural motifs are used to simplify the model and the models with motifs provide satisfying predictions. The data set contains 31947 isomers and their polarizability data and is split into a training set with 90% data points and a complementary testing set. In addition, a second testing set of large fullerene isomers is also prepared and it is used to testing whether a model can be trained by small fullerenes and then gives ideal predictions on large fullerenes. / Machine learning models are capable to be applied in a wide range of areas, such as scientific research. In this thesis, machine learning models are applied to predict chromatography behaviors of fullerenes based on the molecular structures. Chromatography is a common technique for mixture separations, and the separation is because of the difference of interactions between molecules and a stationary phase. In real experiments, a mixture usually contains a large family of different compounds and it requires lots of work and resources to figure out the target compound. Therefore, models are extremely import for studies of chromatography. Traditional models are built based on physics rules, and involves several parameters. The physics parameters are measured by experiments or theoretically computed. However, both of them are time consuming and not easy to be conducted. For fullerenes, in my previous studies, it has been shown that the chromatography model can be simplified and only one parameter, polarizability, is required. A machine learning approach is introduced to enhance the model by predicting the molecular polarizabilities of fullerenes based on structures. The structure of a fullerene is represented by several local structures. Several types of machine learning models are built and tested on our data set and the result shows neural network gives the best predictions.
270

A Comparison of SVM Classifiers with Embedded Feature Selection

Johansson, Adam, Mattsson, Anton January 2024 (has links)
Since their introduction in 1995, Support Vector Machines (SVM) have come to be a widely employed machine learning model for binary classification, owing to their explainable architecture, efficient forward inference, and good ability to generalize. A common desire, not only for SVMs but for machine learning classifiers in general, is to have the model do feature selection, using only a limited subset of the available attributes in its predictions. Various alterations to the SVM problem formulation exist that address this, and in this report we compare a range of such SVM models. We compare how the accuracy and feature selection compare between the models for different datasets, both real and synthetic, and we also investigate the impact of dataset size on the aforementioned quantities.  Our conclusions are that models trained to classify samples based on a smaller subset of features, tend to perform at a comparable level to dense models, with particular advantage when the dataset is small. Furthermore, as the training dataset grows in size, the number of selected features also increases, giving a more complex classifier when prompted with a larger data supply.

Page generated in 0.0163 seconds