431 |
Evoluční model s učením (LEM) pro optimalizační úlohy / Learnable Evolution Model for Optimization (LEM)Grunt, Pavel January 2014 (has links)
My thesis is dealing with the Learnable Evolution Model (LEM), a new evolutionary method of optimization, which employs a classification algorithm. The optimization process is guided by a characteristics of differences between groups of high and low performance solutions in the population. In this thesis I introduce new variants of LEM using classification algorithm AdaBoost or SVM. The qualities of proposed LEM variants were validated in a series of experiments in static and dynamic enviroment. The results have shown that the metod has better results with smaller group sizes. When compared to the Estimation of Distribution Algorithm, the LEM variants achieve comparable or better values faster. However, the LEM variant which combined the AdaBoost approach with the SVM approach had the best overall performance.
|
432 |
Sledovač aktuálního dění / Actual Events TrackerOdstrčilík, Martin January 2013 (has links)
The goal of the master thesis project was to develop an application for tracking of actual events in the surrounding area of the users. This application should allow the users to view events, create new events and add comments to existing ones. Beyond the implementation of developed application, this project deals with an analysis of the presented problem. The analysis includes a comparison with existing solutions and search for available technologies and frameworks applicable for implementation. Another part inside this work is description of the theory in behind of data classification that is internally used for event and comment analysis. This work also includes a design of appliction including design of user interface, software architecture, database, communication protocol and data classifiers. The main part of this project, the implementation, is described aftewards. At the end of this work, there is a summary of the whole process and also there are given some ideas about enhancing the application in the future.
|
433 |
Učení a detekce objektů různých tříd v obraze / Multi Object Class Learning and Detection in ImageChrápek, David January 2012 (has links)
This paper is focused on object learning and recognizing in the image and in the image stream. More specifically on learning and recognizing humans or theirs parts in case they are partly occluded, with possible usage on robotic platforms. This task is based on features called Histogram of Oriented Gradients (HOG) which can work quite well with different poses the human can be in. The human is split into several parts and those parts are detected individually. Then a system of voting is introduced in which detected parts votes for the final positions of found people. For training the detector a linear SVM is used. Then the Kalman filter is used for stabilization of the detector in case of detecting from image stream.
|
434 |
Detekce a rozpoznání dopravních značek v obraze / Detection and Recognition of Traffic Signs in ImageSpáčil, Pavel January 2011 (has links)
This work focuses on classification and recognition of traffic signs in image. It describes briefly some used methods a deeply describes chosen system including extensions and method for creating models needed for classification. There's described implementation of library and demonstration program including important pieces of knowledge discovered during development. There're also results of some experiments and possible enhancements in conclusion.
|
435 |
Využití SVM v prostředí finančních trhů / The Use of SVM in Environment of Financial MarketsŠtechr, Vladislav January 2016 (has links)
This thesis deals with use of regression or classification based on support vector machines from machine learning field. SVMs predict values that are used for decisions of automatic trading system. Regression and classification are evaluated for their usability for decision making. Strategy is being then optimized, tested and evaluated on foreign exchange market Forex historic data set. Results are promising. Strategy could be used in combination with other strategy that would confirm decisions for entering and exiting trades.
|
436 |
Detekce roztroušené sklerózy / Multiple sclerosis detectionKopuletý, Michal January 2016 (has links)
This thesis is focused on detecting multiple sclerosis lesions from magnetic resonance images. Correctly retrieved lesions are very important for medical diagnosis. Detection of lesions using machine learning techniques is quite challenging because of large variability in size, shape and position of lesions in the brain. In the practical part is designed base software, which after completion will classify pixels, so that is possible to find lesions of multiple sclerosis. For classification will be used Support vector machine. Theoretical part describes multiple sclerosis, basic operations performed with biomedical images and data classification.
|
437 |
Rozpoznávání lidské aktivity s pomocí senzorů v chytrém telefonu / Human Activity Recognition Using SmartphoneNovák, Andrej January 2016 (has links)
The increase of mobile smartphones continues to grow and with it the demand for automation and use of the most offered aspects of the phone, whether in medicine (health care and surveillance) or in user applications (automatic recognition of position, etc.). As part of this work has been created the designs and implementation of the system for the recognition of human activity on the basis of data processing from sensors of smartphones, along with the determination of the optimal parameters, recovery success rate and comparison of individual evaluation. Other benefits include a draft format and displaying numerous training set consisting of real contributions and their manual evaluation. In addition to the main benefits, the software tool was created to allow the validation of the elements of the training set and acquisition of features from this set and software, that is able with the help of deep learning to train models and then test them.
|
438 |
Sledování a rozpoznávání lidí na videu / Tracking and Recognition of People in VideoŠajboch, Antonín January 2016 (has links)
The master's thesis deals with detecting and tracking people in the video. To get optimal recognition was used convolution neural network, which extracts vector features from the enclosed frame the face. The extracted vector is further classified. Recognition process must take place in a real time and also with respect are selected optimal methods. There is a new dataset faces, which was obtained from a video record at the faculty area. Videos and dataset were used for experiments to verify the accuracy of the created system. The recognition accuracy is about 85% . The proposed system can be used, for example, to register people, counting passages or to report the occurrence of an unknown person in a building.
|
439 |
Automatická klasifikace spánkových fází z polysomnografických dat / Automatic sleep scoring using polysomnographic dataKříženecká, Tereza January 2017 (has links)
The thesis is focused on automatic classification of polysomnographic signals based on various parameters in time and frequency domain. The parameters are acquired from 30 seconds long segments of EEG, EMG and EOG signals recorded during different sleep stages. The parameters used for automatic classification of sleep stages are selected according to statistical analysis. Classification is performed using the SVM method and evaluation of the success of the classification is done using sensitivity, specificity and percentage success. Classification method was implemented using Matlab.
|
440 |
Detection and counting of Powered Two Wheelers in traffic using a single-plane Laser Scanner / Détection de deux roues motorisées par télémètre laser à balayagePrabhakar, Yadu 10 October 2013 (has links)
La sécurité des deux-roues motorisés (2RM) constitue un enjeu essentiel pour les pouvoirs publics et les gestionnaires routiers. Si globalement, l’insécurité routière diminue sensiblement depuis 2002, la part relative des accidents impliquant les 2RM a tendance à augmenter. Ce constat est résumé par les chiffres suivants : les 2RM représentent environ 2 % du trafic et 30 % des tués sur les routes.On observe depuis plusieurs années une augmentation du parc des 2RM et pourtant il manque des données et des informations sur ce mode de transport, ainsi que sur les interactions des 2RM avec les autres usagers et l'infrastructure routière. Ce travail de recherche appliquée est réalisé dans le cadre du projet ANR METRAMOTO et peut être divisé en deux parties : la détection des2RM et la détection des objets routiers par scanner laser. Le trafic routier en général contient des véhicules de nature et comportement inconnus, par exemple leurs vitesses, leurs trajectoires et leurs interactions avec les autres usagers de la route. Malgré plusieurs technologies pour mesurer le trafic,par exemple les radars ou les boucles électromagnétiques, il est difficile de détecter les 2RM à cause de leurs petits gabarits leur permettant de circuler à vitesse élevée et ce même en interfile. La méthode développée est composée de plusieurs sous-parties: Choisir une configuration optimale du scanner laser afin de l’installer sur la route. Ensuite une méthode de mise en correspondance est proposée pour trouver la hauteur et les bords de la route. Le choix d’installation est validé par un simulateur. A ces données brutes, la méthode de prétraitement est implémentée et une transformation de ces données dans le domaine spatio-temporel est faite. Après cette étape de prétraitement, la méthode d’extraction nommée ‘Last Line Check (LLC)’ est appliquée. Une fois que le véhicule est extrait, il est classifié avec un SVM et un KNN. Ensuite un compteur est mis en œuvre pour compter les véhicules classifiés. A la fin, une comparaison de la performance de chacun de ces deux classifieurs est réalisée. La solution proposée est un prototype et peut être intégrée dans un système qui serait installé sur une route au trafic aléatoire (dense, fluide, bouchons) pour détecter, classifier et compter des 2RM en temps réel. / The safety of Powered Two Wheelers (PTWs) is important for public authorities and roadadministrators around the world. Recent official figures show that PTWs are estimated to represent only 2% of the total traffic but represent 30% of total deaths on French roads. However, as these estimated figures are obtained by simply counting the number plates registered, they do not give a true picture of the PTWs on the road at any given moment. This dissertation comes under the project METRAMOTO and is a technical applied research work and deals with two problems: detection of PTWsand the use of a laser scanner to count PTWs in the traffic. Traffic generally contains random vehicles of unknown nature and behaviour such as speed,vehicle interaction with other users on the road etc. Even though there are several technologies that can measure traffic, for example radars, cameras, magnetometers etc, as the PTWs are small-sized vehicles, they often move in between lanes and at quite a high speed compared to the vehicles moving in the adjacent lanes. This makes them difficult to detect. the proposed solution in this research work is composed of the following parts: a configuration to install the laser scanner on the road is chosen and a data coherence method is introduced so that the system is able to detect the road verges and its own height above the road surface. This is validated by simulator. Then the rawd ata obtained is pre-processed and is transform into the spatial temporal domain. Following this, an extraction algorithm called the Last Line Check (LLC) method is proposed. Once extracted, the objectis classified using one of the two classifiers either the Support Vector Machine (SVM) or the k-Nearest Neighbour (KNN). At the end, the results given by each of the two classifiers are compared and presented in this research work. The proposed solution in this research work is a propototype that is intended to be integrated in a real time system that can be installed on a highway to detect, extract, classify and counts PTWs in real time under all traffic conditions (traffic at normal speeds, dense traffic and even traffic jams).
|
Page generated in 0.0291 seconds