• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SVM-based algorithms for aligning ontologies using literature

xu, wei January 2008 (has links)
<p>Ontologies is one of the key techniques used in Semantic Web establishment. Nowadays,many ontologies have been developed and it is critical to understand the relationships between the terms of the ontologies, i.e. we need to align the ontologies.</p><p>This thesis deals with an approach for finding relationships between ontologies using literature by classifying documents related to terms in the ontologies.</p><p> </p><p>In this project the general method from [1] is used, but in the classifier generation part, a brand new classifier based on SVMs algorithm is implemented by LPU and SVM<em><sup>light</sup></em>. We evaluate our approach and compare it to previous approaches.</p>
2

SVM-based algorithms for aligning ontologies using literature

Xu, Wei January 2008 (has links)
Ontologies is one of the key techniques used in Semantic Web establishment. Nowadays,many ontologies have been developed and it is critical to understand the relationships between the terms of the ontologies, i.e. we need to align the ontologies. This thesis deals with an approach for finding relationships between ontologies using literature by classifying documents related to terms in the ontologies.   In this project the general method from [1] is used, but in the classifier generation part, a brand new classifier based on SVMs algorithm is implemented by LPU and SVMlight. We evaluate our approach and compare it to previous approaches.
3

Automatic Pronoun Resolution for Swedish / Automatisk pronomenbestämning på svenska

Ahlenius, Camilla January 2020 (has links)
This report describes a quantitative analysis performed to compare two different methods on the task of pronoun resolution for Swedish. The first method, an implementation of Mitkov’s algorithm, is a heuristic-based method — meaning that the resolution is determined by a number of manually engineered rules regarding both syntactic and semantic information. The second method is data-driven — a Support Vector Machine (SVM) using dependency trees and word embeddings as features. Both methods are evaluated on an annotated corpus of Swedish news articles which was created as a part of this thesis. SVM-based methods significantly outperformed the implementation of Mitkov’s algorithm. The best performing SVM model relies on tree kernels applied to dependency trees. The model achieved an F1-score of 0.76 for the positive class and 0.9 for the negative class, where positives are pairs of pronoun and noun phrase that corefer, and negatives are pairs that do not corefer. / Rapporten beskriver en kvantitativ analys som genomförts för att jämföra två olika metoder för automatisk pronomenbestämning på svenska. Den första metoden, en implementation av Mitkovs algoritm, är en heuristisk metod vilket innebär att pronomenbestämningen görs med ett antal manuellt utformade regler som avser att fånga både syntaktisk och semantisk information. Den andra metoden är datadriven, en stödvektormaskin (SVM) som använder dependensträd och ordvektorer som särdrag. Båda metoderna utvärderades med hjälp av en annoterad datamängd bestående av svenska nyhetsartiklar som skapats som en del av denna avhandling. Den datadrivna metoden överträffade Mitkovs algoritm. Den SVM-modell som ger bäst resultat bygger på trädkärnor som tillämpas på dependensträd. Modellen uppnådde ett F1-värde på 0.76 för den positiva klassen och 0.9 för den negativa klassen, där de positiva datapunkterna utgörs av ett par av pronomen och nominalfras som korefererar, och de negativa datapunkterna utgörs av par som inte korefererar.

Page generated in 0.027 seconds