Spelling suggestions: "subject:"saccharomyces cerevisiae -- browth"" "subject:"saccharomyces cerevisiae -- bgrowth""
1 |
Expression of fungal b-glucosidases in Saccharomyces cerevisiae for enhanced growth on cellobioseNjokweni, Anathi Perseverence 12 1900 (has links)
Thesis (MSc (Microbiology))--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Bio-fuels have been considered an ideal substitute for fossil fuels due to their availability and renewable nature. Bio-ethanol is currently of great market interest as an alternative fuel with the potential of supplementing petroleum as transportation fuel. Lignocellulosic biomass, a renewable energy source, can be "readily" converted to bio-ethanol. The main impediment in the conversion process is the recalcitrance of the main lignocellulosic components (cellulose, hemicelluloses and lignin) to enzymatic hydrolysis as well as the lack of available low-cost technology. Consolidated Bioprocessing (CBP) is a single process step which offers a cost-effective and economically feasible strategy for bio-ethanol production. The process requires micro-organisms that produce ethanol at high rates and titres.
Saccharomyces cerevisiae has potential as a CBP candidate due to its high ethanol yield, robustness in industrial processes, well-developed gene expression system and its safety status. Unfortunately S. cerevisiae does not degrade polysaccharides and therefore requires heterologous expression of cellulases. Genetic engineering of S. cerevisiae for cellulose hydrolysis serves as an important step in yeast strain development for CBP, and serves as a stepping stone for the commercialisation of lignocellulosic bio-ethanol. Although cellulose- utilising S. cerevisiae strains have been constructed, the cellobiose conversion is slow, hampering optimal ethanol production. β-glucosidases have been shown to be the major rate-limiting factors in cellulose saccharification as their activity determines the extent of cellulose hydrolysis, by removing excess cellobiose which causes feed-back inhibition on endoglucanase and cellobiohydrolase activities (Du Plessis et al. 2009;Lynd et al. 2002). Therefore, insufficient supply of β-glucosidase activity is detrimental to CBP and can be addressed by increasing the enzyme supply or using highly active β-glucosidases to enhance cellobiose hydrolysis.
In this study, several cellobiose fermenting S. cerevisiae strains were constructed. Extracellular fungal β-glucosidase-encoding genes were successfully expressed in S. cerevisiae under the transcriptional control of the ENO1 (enolase) promoter and terminator sequences. The recombinant enzymes produced were characterised based on pH and temperature optima as well as kinetic parameters. Bio-fuels have been considered an ideal substitute for fossil fuels due to their availability and renewable nature. Bio-ethanol is currently of great market interest as an alternative fuel with the potential of supplementing petroleum as transportation fuel. Lignocellulosic biomass, a renewable energy source, can be „readily‟ converted to bio-ethanol. The main impediment in the conversion process is the recalcitrance of the main lignocellulosic components (cellulose, hemicelluloses and lignin) to enzymatic hydrolysis as well as the lack of available low-cost technology. Consolidated Bioprocessing (CBP) is a single process step which offers a cost-effective and economically feasible strategy for bio-ethanol production. The process requires micro-organisms that produce ethanol at high rates and titres.
Saccharomyces cerevisiae has potential as a CBP candidate due to its high ethanol yield, robustness in industrial processes, well-developed gene expression system and its safety status. Unfortunately S. cerevisiae does not degrade polysaccharides and therefore requires heterologous expression of cellulases. Genetic engineering of S. cerevisiae for cellulose hydrolysis serves as an important step in yeast strain development for CBP, and serves as a stepping stone for the commercialisation of lignocellulosic bio-ethanol. Although cellulose- utilising S. cerevisiae strains have been constructed, the cellobiose conversion is slow, hampering optimal ethanol production. β-glucosidases have been shown to be the major rate-limiting factors in cellulose saccharification as their activity determines the extent of cellulose hydrolysis, by removing excess cellobiose which causes feed-back inhibition on endoglucanase and cellobiohydrolase activities (Du Plessis et al. 2009;Lynd et al. 2002). Therefore, insufficient supply of β-glucosidase activity is detrimental to CBP and can be addressed by increasing the enzyme supply or using highly active β-glucosidases to enhance cellobiose hydrolysis.
In this study, several cellobiose fermenting S. cerevisiae strains were constructed. Extracellular fungal β-glucosidase-encoding genes were successfully expressed in S. cerevisiae under the transcriptional control of the ENO1 (enolase) promoter and terminator sequences. The recombinant enzymes produced were characterised based on pH and temperature optima as well as kinetic parameters. / AFRIKAANSE OPSOMMING: Biobrandstof word beskou as die ideale plaasvervanger vir fossielbrandstof weens die beskikbaarheid en herwinbare aard daarvan. Bio-etanol wek tans groot mark-verwante belangstelling as alternatiewe brandstof weens die potensiaal om petroleum as vervoerbrandstof aan te vul. Lignosellulose biomassa, 'n hernubare energiebron, kan "maklik" tot bio-etanol omgeskakel word. Die groot struikelblok in die omskakelingsproses is die weerstandbiedendheid van die lignosellulose komponente (sellulose, hemisellulose en lignien) teen ensiematiese hidroliese asook die gebrek aan beskikbaarheid van lae koste tegnologie. Gekonsolideerde Bioprosessering (KBP) is 'n enkel stap proses wat 'n koste-effektiewe en ekonomiesvatbare strategie voorstel vir bio-etanolproduksie. Die proses benodig 'n mikroorganisme wat daartoe instaat is om etanol teen hoë vlakke en tempo te kan produseer.
Saccharomyces cerevisiae het potensiaal as 'n KBP kandidaat weens sy hoë vlakke van etanolproduksie, gehardheid in industriële prosesse, goed-ontwikkelde geenuitdrukking sisteme en veiligheidstatus. Ongelukkig kan S. cerevisiae nie polisakkariede afbreek nie en benodig derhalwe heteroloë uitdrukking van sellulases. Die genetiese manipulering van S. cerevisiae vir sellulose hidroliese dien as 'n belangrike stap in gisrasontwikkeling vir KBP en dien as 'n “stepping stone” vir die kommersialisasie van lignosellulose bio-etanol. Alhoewel sellulose-benuttende S. cerevisiae rasse reeds gekonstrueer is, is sellulose omskakeling stadig en belemmer dit optimale etanolproduksie. 'n Hoogs aktiewe glukosidase word derhalwe benodig om die hidroliese van sellobiose te versnel.
Die studie behels die konstruksie van verskeie sellobiose-fermenterende S. cerevisiae rasse. Ektrasellulêre, fungiese -glukosidase-koderende gene was suksesvol in S. cerevisiae uitgedruk onderhewig aan die transkripsionele beheer van die ENO1 (enulase) promoter en termineerder DNS-volgordes. Die geproduseerde, rekombinante ensieme is gekarakteriseer op grond van optimale pH en temperatuur, asook kinetiese eienskappe. Die intrasellulêre benutting van sellobiose is 'n ideale benadering tot sellobiose hidroliese siende dat dit die risiko van kontaminasie verminder wat veroorsaak word deur die glukose wat vrygestel word in die ekstrasellulêre omgewing. Tog beskik S. cerevisiae nie oor 'n vervoer meganisme om sellobiose in die sel in te bring nie. Derhalwe is die intrasellulêre Phanaerochaete chrysosporium -glukosidase-koderende geen suksesvol saam met die Kluyveromyces lactis laktose permease uitgedruk. Alle rekombinante rasse is vir groei op sellobiose geevalueer. Die mees belowendste esktrasellulêre -glukosidase-produserende S. cerevisiae Y294[Pccbgl1] ras toon 'n aktiwiteit van 3.85 nkat.g-1, 1.85 keer meer die aktiwiteit van die S. cerevisiae Y294[SFB] ras (2.07 nkat.g-1). S. cerevisiae Y294[Pccbgl1] het ook 'n maksimum groei tempo van 0.25 h-1 onder anearobiese kondisies in vergelyking met die 0.064 h-1 van S. cerevisiae Y294[iPcbglB+lac12] toon. Onder anaërobe kondisies het S. cerevisiae Y294[Pccbgl1] 7.95 g.l-1 sellobiose verbruik en 4.05 g. l-1 etanol geproduseer oor 'n tydperk van 116 uur, terwyl S. cerevisiae Y294[iPcbglB+lac12] 0.41 g.l-1 sellobiose verbruik het en 0.21 g.l-1 etanol oor dieselfde tydperk geproduseer het. Die rekombinante rasse wat in die studie gekonstrueer is, is 'n belangrike stap in die ontwikkeling van S. cerevisiae as KBP sellulolitiese gis. / The South African National Research Institute (SANERI) for financial support
|
2 |
Cell differentiation in response to nutrient availability : the repressor of meiosis, RME1, positively regulates invasive growth in Saccharomyces cerevisiaeHansson, Guy Robert, 1974- 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: Yeasts, like most organisms, have to survive in highly variable and hostile
environments. Survival therefore requires adaptation to the changing external
conditions. On the molecular level, specific adaptation to specific environmental
conditions requires the yeast to be able: (i) to sense all relevant environmental
parameters; (ii) to relay the perceived signals to the interior of the cell via signal
transduction networks; and (iii) to implement a specific molecular response by
modifying enzyme activities and by regulating transcription of the appropriate genes.
The availability of nutrients is one of the major trophic factors for all unicellular
organisms, including yeast. Saccharomyces cerevisiae senses the nutritional
composition of the media and implements a specific developmental choice in response
to the level of essential nutrients. In conditions in which ample nutrients are available,
S. cerevisiae will divide mitotically and populate the growth environment. If the
nutrients are exhausted, diploid S. cerevisiae cells can undergo meiosis, which
produces four ascospores encased in an ascus. These ascospores are robust and
provide the yeast with a means to survive adverse environmental conditions. The
ascospores can lie dormant for extended periods of time until the onset of favourable
growth conditions, upon which the spores will germinate, mate and give rise to a new
yeast population. However, S. cerevisiae has a third developmental option, referred to
as pseudohyphal and invasive growth. In growth conditions in which nutrients are
limited, but not exhausted, the yeast can undergo a morphological switch, altering its
budding pattern and forming chains of elongated cells that can penetrate the growth
substrate to forage for nutrients.
The focus of this study was on elements of the signal transduction networks
regulating invasive growth in S. cerevisiae. Some components of the signal
transduction pathways are well characterised, while several transcription factors that
are regulated via these pathways remain poorly studied. In this study, the RMEt gene
was identified for its ability to enhance starch degradation and invasive growth when
present on a multiple copy plasmid. Rme1 p had previously been identified as a
repressor of meiosis and, for this reason, the literature review focuses on the
regulation of the meiotic process. In particular, the review focuses on the factors
governing entry into meiosis in response to nutrient starvation and ploidy. Also, the
transcriptional regulation of the master initiator of meiosis, IMEt, and the action of
Ime1 p are included in the review.
The experimental part of the study entailed a genetic analysis of the role of Rme1 p
in invasive growth and starch metabolism. Epistasis analysis was conducted of
Rme1 p and elements of the MAP Kinase module, as well as of the transcription
factors, Mss11p, Msn1p/Mss10p, Tec1p, Phd1p and F108p. Rme1p is known to bind
to the promoter of CLN2, a G1-cyclin, and enhances its expression. Therefore, the cell cyclins CLN1 and CLN2 were included in the study. The study revealed that Rme1 p
functions independently or downstream of the MAP Kinase cascade and does not
require Cln1 p or Cln2p to induce invasive growth. FL011/MUC1 encodes a cell wall
protein that is required for invasive growth. Like the above-mentioned factors, Rme1 p
requires FL011 to induce invasive growth. We identified an Rme1 p binding site in the
promoter of FL011. Overexpression of Rme1p was able to induce FL01t expression,
despite deletions of mss11, msn1, ttos, tee1 and phd1. In the inverse experiment,
these factors were able to induce FL011 expression in an rme1 deleted strain. This
would indicate that Rme1 p does not function in a hierarchical signalling system with
these factors, but could function in a more general role to modify transcription. / AFRIKAANSE OPSOMMING: Die natuur is hoogs veranderlik en alle organismes, insluitende gis, moet by die
omgewing kan aanpas om te kan oorleef. Baie eksterne faktore beïnvloed die
ontwikkeling van die gissel. Vir die gis om by spesifieke omgewingstoestande aan te
pas, moet die gis op 'n molekulêre vlak: (i) al die omgewingsparameters waarneem; (ii)
die waargenome omgewingsparameters as seine na die selkern deur middel van
seintransduksieweë gelei; en (iii) transkripsie van gene aktiveer of onderdruk en
ensiemaktiwiteit reguleer om sodoende die gepaste molekulêre respons te
implementeer.
Die beskikbaarheid van voedingstowwe in die omgewing is een van die
belangrikste omgewingseine wat eensellige organismes moet kan waarneem.
Saccharomyces cerevisiae kan spesifieke ontwikkelingsopsies, na gelang van die
voedingstowwe wat beskikbaar is, uitoefen. In groeiomstandighede waar daar 'n
oorvloed van voedingstowwe is, verdeel S. cerevisiae d.m.v. mitose en vesprei dit
deur die omgewing. Sodra die voedingstowwe uitgeput is, word mitose onderdruk.
Diploïede S. cerevisiae inisieer meiose, wat aanleiding tot die vorming van vier spore
gee. Hierdie spore bevat slegs die helfte van die ouer se chromosome en kan
gevolglik met 'n ander spoor paar om weer 'n diploïede gissel te vorm. Die spore is
bestand teen strawwe omgewingstoestande en kan vir lang tye oorleef. Wanneer die
spoor aan gunstige groeitoestande blootgestel word, ontkiem dit om aan 'n nuwe
giskolonie oorsprong te gee. S. cerevisiae het egter 'n derde ontwikkelingsopsie,
naamlik pseudohife-differensiëring. Wanneer die beskikbaarheid van voedingstowwe
in die omgewing afneem, maar nog nie uitgeput is nie, ondergaan die gis 'n
morfologiese verandering. Hierdie verandering word gekenmerk deur selverlenging,
nl. botselle wat slegs aan die een punt van die gissel vorm en dogterselle wat aan die
moerderselle geheg bly. Dit lei tot die vorming van kettings van selle wat van die
giskolonie af weggroei. Voorts kan die selkettings ook die groeisubstraat binnedring.
Dit staan as penetrasie-groei bekend en laat die gis toe om na nuwe voedingsbronne
te soek.
Hierdie studie het op die elemente van seintransduksieweë, wat by
penetrasiegroei betrokke is, gefokus. Sekere komponente van die seintransduksieweë
is reeds goed gekarakteriseer, terwyl ander komponente nog grootliks onbekend is. In
hierdie studie, word 'n rol vir RME1 in die verbetering van styselafbraak en
penetrasiegroei geïdentifiseer. Aangesien Rme1 p voorheen as 'n onderdrukker van
meiose geïdentifiseer is, is 'n litetaruurstudie oor die inisiasie van meiose saamgestel.
Die faktore wat meiose induseer, naamlik 'n gebrek aan voedingstowwe en die sel se
ploïedie, word bespreek. Die regulering van die meester inisieerder van meiosie,
IME1, asook die proteïene waarmee Ime1p reageer, is ook in die studie ingesluit. Die eksperimentele deel van die studie behels die genetiese analise van Rme1 p
tydens penetrasiegroei en styselhidroliese. 'n Epistase-analise tussen Rme1 p en
elemente van die MAP-Kinasemodule, asook van die transkripsie faktore Mss11 p,
Msn1p/Mss10p, Tec1p, Phd1p en F108p, is onderneem. Rme1p is bekend om aan die
promotor van CLN2 te bind en transkripsie te induseer. Daarom is die selsikliene
CLN1 en CLN2 in die studie ingesluit. Die studie dui daarop dat Rme1 ponafhanklik
van die MAP-Kinasemodule funksioneer en nie Cln1 p en Cln2p benodig om
penetrasiegroei te induseer nie. FL011/MUC1 kodeer vir 'n selwandproteïen wat
noodsaaklik vir pentrasiegroei is. Soos in die geval van die bogenoemde faktore,
benodig Rme1 p FL011 om penetrasiegroei te kan induseer. Ten spyte van mss11-,
msn1-, ttos-, tec1- en phd1- delesies, kan ooruitdrukking van Rme1p die transkripsie
van FL011 induseer. In die omgekeerde eksperiment kon die bogenoemde faktore
FL011-transkripsie ten spyte van 'n rme1 delesie induseer. Die resultate dui daarop
dat Rme1 p nie in 'n hiërargiese pad funksioneer nie, maar dat dit waarskynlik 'n meer
algemene rol deur transkripsiemodifisering vervul.
|
Page generated in 0.0568 seconds