• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Safe Yield for Jointly Operated Reservoir System and Examination of ENSO Impacts

Sachan, Amit 20 June 2003 (has links)
Determination of safe yield of a water source is a basic aspect of water supply planning. In this report, the safe yield is defined as the maximum constant release from a reservoir that is possible during a selected drought period. The yield depends on drought magnitude and duration controlled by nature and ability to manipulate the releases through man made controls in the form of impoundment structures and regulations. A water supply system with two reservoirs in series and one in parallel in Spotsylvania County — the Hunting Run Reservoir, the Motts Run Reservoir (in series), and the Ni River Reservoir is considered to demonstrate the yield calculations. When several reservoirs are considered, the critical periods (defined as the period from full storage to empty condition) may not coincide and the system must be analyzed for the binding critical duration. A zero-one linear integer programming formulation is proposed to compute the system yield. The formulation accommodates the various storage and river flow dependent instream flow requirements. It is found that the water treatment plant capacity, instream flow requirements, and flows themselves limit the yield. Inflows to the reservoir are very important factor in determination of safe yield for any system of reservoirs. Changes in the precipitation hence inflows may cause a significant effect on the operation of reservoir. El Nino and La Nina phenomena, which occur due to changes in the atmospheric condition over the equatorial Pacific region, are found to affect the global climate in different studies. To examine the changes in the precipitation / streamflows due to El Nino and La Nina events on the safe yield, studies are done on the streamflows in the study area and four regions across the world during El Nino and LA Nina events. Lag correlation studies and descriptive analysis of the streamflows in the study region in Northern Virginia fail to show any pattern in the streamflow changes due to El Nino and La Nina events, based on the available data. However, this observation is not conclusive and further research if needed. / Master of Science
2

Agriculture and Groundwater Overdraft in California’s Central Valley : Lantbruk och grundvatten-övertrassering i Kaliforniens Central Valley region

Peterson, Kaj January 2016 (has links)
Agriculture in California’s Central Valley is important to the US economy and food supply. High reliance on groundwater (GW) for irrigation has led to GW overdraft. Among the consequences is that the GW level is lowered, increasing the energy requirements and cost of GW extraction. This is assessed in a case study of the Turlock subbasin, as well as a simplified Cost-Benefit Analysis (CBA), in which the profitability of strategies for avoiding groundwater overdraft is compared to Business As Usual (BAU) for the years 2001 and 2050, using a high and low energy cost estimate. Climate projections are applied to the year 2050. An overdraft of 95 million m3 in 2001 is found to lower the GW level by 19.3cm, leading to an increase in energy requirements and cost of GW extraction of 0.320 Wh/m3 and 0.416 cents/m3, respectively. A reduction in production was found to be less profitable than BAU in all cases except for the year 2050, using high cost estimates. Crop replacement was found to be profitable in all cases. The use of desalinated water was found to be unprofitable in all cases. It is concluded that climate change and irrigation costs will have one or more of the following outcomes: decreased production, a shift towards higher $/m3 crops, and/or increased food prices. / Lantbruk I Kaliforniens Central Valley region är viktig för den Amerikanska ekonomin och livsmedelsförsörjningen. Stort beroende av grundvatten till konstbevattning har lett till grundvatten-övertrassering. Bland dess konsekvenser är att grundvatten nivån sjunker, vilket gör det mer energi-krävande och kostsamt att pumpa grundvattnet. Detta analyseras i fallstudiet, Turlock subbasin, där det även utförs en förenklad kostnads-nytto analys, i vilken lönsamheten av strategier för att undvika grundvatten-övertrassering jämförs med Business As Usual (BAU) för åren 2001 och 2050, baserad på en hög och en låg uppskattning av energi kostnader. Året 2050 beräknas inklusive förväntade förändringar i klimatet. En övertrassering på 95 miljoner m3 i 2001 visar sig resultera i att grundvatten nivån sjunker 19,3 cm, vilket ökar energibehovet och kostnaden av att pumpa grundvatten med 0,32 Wh/m3 respektivt 0,416 cents/m3. Att minska produktionen visar sig att endast vara lönsamt i ett fall: år 2050 med höga energi uppskattningar. Att byta grödor visar sig vara lönsamt i alla fall. Att förbruka desalinerat vatten visar sig vara olönsamt i alla fall. Det dras slutsatsen att förändringar i klimatet och kostnader av konstbevattning kommer att leda till en eller fler av följande utfall: förminskad produktion, ett skift mot högre $/m3 grödor, och/eller förhöjda matpriser.
3

Investigation Of The Safe And Sustainable Yields For The Sandy Complex Aquifer System In Ergene River Basin

Okten, Sebnem 01 July 2004 (has links) (PDF)
This study aims to determine the safe and sustainable development and management of groundwater resources in Ergene River Basin located in northwestern Turkey. A numerical groundwater model was developed for the Sandy Complex aquifer, which is the most productive and the most widespread aquifer in the basin. The finite difference model with 5900 cells was used to represent the steady and unsteady flow in the aquifer. The model was calibrated in two steps: a steady state calibration by using the observed groundwater levels of January 1970, followed by a transient calibration by using the observed groundwater levels for the period of January 1970 and December 2000. The resulting model was used to develop groundwater pumping scenarios in order to predict the changes in the aquifer system under a set of different pumpage conditions for a planning period of 30 years between January 2001 and December 2030. A total of eight pumping scenarios were developed under transient flow conditions for the planning period and the results were evaluated to determine the safe and sustainable yields of the aquifer. The results, presented in the form of a trade-off curve, demonstrate that the continuation of the present pumping rates exceeds both the safe and the sustainable yields of the aquifer system.
4

Sustainable utilisation of Table Mountain Group aquifers

Duah, Anthony A. January 2010 (has links)
<p>The Table Mountain Group (TMG) Formation is the lowest member of the Cape Supergroup which consists of sediments deposited from early Ordovician to early Carboniferous times, approximately between 500 and 340 million years ago. The Table Mountain Group (TMG) aquifer system is&nbsp / exposed along the west and south coasts of South Africa. It is a regional fractured rock aquifer that has become a major source of bulk water supply to&nbsp / meet the agricultural and urban water requirements of the Western and Eastern Cape Provinces of South Africa. The TMG aquifer system comprises of an approximately 4000 m thick sequence of quartz arenite and minor shale layers deposited in a shallow, but extensive, predominantly eastwest striking&nbsp / asin, changing to a northwest orientation at the west coast. The medium to coarse grain size and relative purity of some of the quartz arenites,&nbsp / together with their well indurated nature and fracturing due to folding and faulting in the fold belt, enhance both the quality of the groundwater and its&nbsp / exploitation potential for agricultural and domestic water supply purposes and its hot springs for recreation. The region is also home to some unique&nbsp / and indigenous floral species (fynbos) of worldwide importance. These and other groundwater dependent vegetation are found on the series of&nbsp / mountains, mountain slopes and valleys in the Cape Peninsula. The hydrogeology of the TMG consists of intermontane and coastal domains which&nbsp / have different properties but are interconnected. The former is characterized by direct recharge from rain and snow melt, deep groundwater circulation with hot springs and low conductivity groundwater. The coastal domain is characterized by shallow groundwater occurrence usually with moderate to&nbsp / poor quality, indirect recharge from rainfall of shallow circulation and where springs occur they are usually cold. The sustainable utilization of the TMG&nbsp / aquifer addressed the issues of the groundwater flow dynamics, recharge and discharge to and from the aquifer / challenges of climate change and climate variability and their potential impact on the aquifer system. The concept of safe yield, recharge and the capture principle and the integration of&nbsp / sustainable yield provided the basis for sustainable utilization with the adaptive management approach. Methodology used included the evaluation of&nbsp / recharge methods and estimates in the TMG aquifer and a GIS based water balance recharge estimation. The evaluation of natural discharges and&nbsp / artificial abstractions from the TMG aquifer system as well as its potential for future development. The Mann-Kendal trend analysis was used to test historical and present records of temperature and rainfall for significant trends as indication for climate variability and change. The determination of&nbsp / variability index of rainfall and standard precipitation index were additional analyses to investigate variability. The use of a case study from the Klein&nbsp / (Little) Karoo Rural Water Supply Scheme (KKRWSS) within the TMG study area was a test case to assess the sustainable utilization of TMG aquifers.&nbsp / Results show that recharge varies in time and space between 1% and 55% of MAP as a result of different hydrostratigraphic units of the TMG based on&nbsp / geology, hydrology, climate, soil, vegetation and landuse patterns however, the average recharge is from 1% to 5% of MAP. The TMG receives recharge&nbsp / mainly through its 37,000 km2 of outcrop largely exposed on mountainous terrain. Natural discharges from the TMG include 11 thermal and numerous&nbsp / cold spring discharges, baseflow to streams and reservoirs, and seepage to the ocean. Results from this study also show increasing temperature&nbsp / trend over the years while rainfall trend generally&nbsp / remain unchanged in the study area. Rainfall variability persists hence the potential for floodsand droughts in the region remain. Global and Regional Models predict about 10% to 25% reduction in rainfall and increase in variability in future. Impacts of&nbsp / his change in climate will affect the different types of aquifers in various ways. Increase in temperature and reduction in rainfall will increase&nbsp / evapotranspiration, reduce surface flows and eventually reduce shallow aquifer resources. Coastal aquifers risk upsurge in salinisation from sea level&nbsp / rise and increase in abstractions from dwindling surface water resources. While floods increase the risk of contamination to shallow aquifers droughts&nbsp / put pressure on all aquifers especially deep aquifers which are considered to be more reliable due to the fact that they are far removed from surface conditions. Future population growth and increase in freshwater demand will put more pressure on groundwater. Recharge to groundwater have been&nbsp / over-estimated in certain areas in the past leading to high abstraction rates from boreholes causing extensive groundwater storage depletion evident by high decline in groundwater levels in these areas and hampering sustainable management of the aquifer resources. Over-abstraction have resulted in&nbsp / loss of stream flow and baseflow reduction to streams during summer, complete loss of springs and reduction of flow to others. Flow to wetlands,&nbsp / riparian vegetation, and sometimes loss and shifts in dependent ecosystems have also resulted from over-abstraction. Sustainability has spatial and&nbsp / temporal implications due to changing climate and demand. The study recommends adaptive management practices in which several factors are&nbsp / considered in managing groundwater together with surface water resources in order to maintain ecological and environmental integrity. The KKRWSS&nbsp / and other groundwater supply schemes in the Western and Eastern Cape Provinces demonstrate the huge potential of the TMG to provide freshwatersupply for domestic and irrigation water needs however, the huge decline in groundwater levels due to over-abstraction in the KKRWSS and&nbsp / other groundwater schemes underscores the need for sustainable utilization of the TMG groundwater resources for present and future generations with&nbsp / minimal impacts on the quality, dependent hydrological and ecosystems as well as the environment.</p>
5

Sustainable utilisation of Table Mountain Group aquifers

Duah, Anthony A. January 2010 (has links)
<p>The Table Mountain Group (TMG) Formation is the lowest member of the Cape Supergroup which consists of sediments deposited from early Ordovician to early Carboniferous times, approximately between 500 and 340 million years ago. The Table Mountain Group (TMG) aquifer system is&nbsp / exposed along the west and south coasts of South Africa. It is a regional fractured rock aquifer that has become a major source of bulk water supply to&nbsp / meet the agricultural and urban water requirements of the Western and Eastern Cape Provinces of South Africa. The TMG aquifer system comprises of an approximately 4000 m thick sequence of quartz arenite and minor shale layers deposited in a shallow, but extensive, predominantly eastwest striking&nbsp / asin, changing to a northwest orientation at the west coast. The medium to coarse grain size and relative purity of some of the quartz arenites,&nbsp / together with their well indurated nature and fracturing due to folding and faulting in the fold belt, enhance both the quality of the groundwater and its&nbsp / exploitation potential for agricultural and domestic water supply purposes and its hot springs for recreation. The region is also home to some unique&nbsp / and indigenous floral species (fynbos) of worldwide importance. These and other groundwater dependent vegetation are found on the series of&nbsp / mountains, mountain slopes and valleys in the Cape Peninsula. The hydrogeology of the TMG consists of intermontane and coastal domains which&nbsp / have different properties but are interconnected. The former is characterized by direct recharge from rain and snow melt, deep groundwater circulation with hot springs and low conductivity groundwater. The coastal domain is characterized by shallow groundwater occurrence usually with moderate to&nbsp / poor quality, indirect recharge from rainfall of shallow circulation and where springs occur they are usually cold. The sustainable utilization of the TMG&nbsp / aquifer addressed the issues of the groundwater flow dynamics, recharge and discharge to and from the aquifer / challenges of climate change and climate variability and their potential impact on the aquifer system. The concept of safe yield, recharge and the capture principle and the integration of&nbsp / sustainable yield provided the basis for sustainable utilization with the adaptive management approach. Methodology used included the evaluation of&nbsp / recharge methods and estimates in the TMG aquifer and a GIS based water balance recharge estimation. The evaluation of natural discharges and&nbsp / artificial abstractions from the TMG aquifer system as well as its potential for future development. The Mann-Kendal trend analysis was used to test historical and present records of temperature and rainfall for significant trends as indication for climate variability and change. The determination of&nbsp / variability index of rainfall and standard precipitation index were additional analyses to investigate variability. The use of a case study from the Klein&nbsp / (Little) Karoo Rural Water Supply Scheme (KKRWSS) within the TMG study area was a test case to assess the sustainable utilization of TMG aquifers.&nbsp / Results show that recharge varies in time and space between 1% and 55% of MAP as a result of different hydrostratigraphic units of the TMG based on&nbsp / geology, hydrology, climate, soil, vegetation and landuse patterns however, the average recharge is from 1% to 5% of MAP. The TMG receives recharge&nbsp / mainly through its 37,000 km2 of outcrop largely exposed on mountainous terrain. Natural discharges from the TMG include 11 thermal and numerous&nbsp / cold spring discharges, baseflow to streams and reservoirs, and seepage to the ocean. Results from this study also show increasing temperature&nbsp / trend over the years while rainfall trend generally&nbsp / remain unchanged in the study area. Rainfall variability persists hence the potential for floodsand droughts in the region remain. Global and Regional Models predict about 10% to 25% reduction in rainfall and increase in variability in future. Impacts of&nbsp / his change in climate will affect the different types of aquifers in various ways. Increase in temperature and reduction in rainfall will increase&nbsp / evapotranspiration, reduce surface flows and eventually reduce shallow aquifer resources. Coastal aquifers risk upsurge in salinisation from sea level&nbsp / rise and increase in abstractions from dwindling surface water resources. While floods increase the risk of contamination to shallow aquifers droughts&nbsp / put pressure on all aquifers especially deep aquifers which are considered to be more reliable due to the fact that they are far removed from surface conditions. Future population growth and increase in freshwater demand will put more pressure on groundwater. Recharge to groundwater have been&nbsp / over-estimated in certain areas in the past leading to high abstraction rates from boreholes causing extensive groundwater storage depletion evident by high decline in groundwater levels in these areas and hampering sustainable management of the aquifer resources. Over-abstraction have resulted in&nbsp / loss of stream flow and baseflow reduction to streams during summer, complete loss of springs and reduction of flow to others. Flow to wetlands,&nbsp / riparian vegetation, and sometimes loss and shifts in dependent ecosystems have also resulted from over-abstraction. Sustainability has spatial and&nbsp / temporal implications due to changing climate and demand. The study recommends adaptive management practices in which several factors are&nbsp / considered in managing groundwater together with surface water resources in order to maintain ecological and environmental integrity. The KKRWSS&nbsp / and other groundwater supply schemes in the Western and Eastern Cape Provinces demonstrate the huge potential of the TMG to provide freshwatersupply for domestic and irrigation water needs however, the huge decline in groundwater levels due to over-abstraction in the KKRWSS and&nbsp / other groundwater schemes underscores the need for sustainable utilization of the TMG groundwater resources for present and future generations with&nbsp / minimal impacts on the quality, dependent hydrological and ecosystems as well as the environment.</p>
6

Sustainable utilisation of Table Mountain Group aquifers

Duah, Anthony A. January 2010 (has links)
Philosophiae Doctor - PhD / The Table Mountain Group (TMG) Formation is the lowest member of the Cape Supergroup which consists of sediments deposited from early Ordovician to early Carboniferous times, approximately between 500 and 340 million years ago. The Table Mountain Group (TMG) aquifer system is exposed along the west and south coasts of South Africa. It is a regional fractured rock aquifer that has become a major source of bulk water supply to meet the agricultural and urban water requirements of the Western and Eastern Cape Provinces of South Africa. The TMG aquifer system comprises of an approximately 4000 m thick sequence of quartz arenite and minor shale layers deposited in a shallow, but extensive, predominantly eastwest striking asin, changing to a northwest orientation at the west coast. The medium to coarse grain size and relative purity of some of the quartz arenites, together with their well indurated nature and fracturing due to folding and faulting in the fold belt, enhance both the quality of the groundwater and its exploitation potential for agricultural and domestic water supply purposes and its hot springs for recreation. The region is also home to some unique and indigenous floral species (fynbos) of worldwide importance. These and other groundwater dependent vegetation are found on the series of mountains, mountain slopes and valleys in the Cape Peninsula. The hydrogeology of the TMG consists of intermontane and coastal domains which have different properties but are interconnected. The former is characterized by direct recharge from rain and snow melt, deep groundwater circulation with hot springs and low conductivity groundwater. The coastal domain is characterized by shallow groundwater occurrence usually with moderate to poor quality, indirect recharge from rainfall of shallow circulation and where springs occur they are usually cold. The sustainable utilization of the TMG aquifer addressed the issues of the groundwater flow dynamics, recharge and discharge to and from the aquifer; challenges of climate change and climate variability and their potential impact on the aquifer system. The concept of safe yield, recharge and the capture principle and the integration of sustainable yield provided the basis for sustainable utilization with the adaptive management approach. Methodology used included the evaluation of recharge methods and estimates in the TMG aquifer and a GIS based water balance recharge estimation. The evaluation of natural discharges and artificial abstractions from the TMG aquifer system as well as its potential for future development. The Mann-Kendal trend analysis was used to test historical and present records of temperature and rainfall for significant trends as indication for climate variability and change. The determination of variability index of rainfall and standard precipitation index were additional analyses to investigate variability. The use of a case study from the Klein (Little) Karoo Rural Water Supply Scheme (KKRWSS) within the TMG study area was a test case to assess the sustainable utilization of TMG aquifers. Results show that recharge varies in time and space between 1% and 55% of MAP as a result of different hydrostratigraphic units of the TMG based on geology, hydrology, climate, soil, vegetation and landuse patterns however, the average recharge is from 1% to 5% of MAP. The TMG receives recharge mainly through its 37,000 km2 of outcrop largely exposed on mountainous terrain. Natural discharges from the TMG include 11 thermal and numerous cold spring discharges, baseflow to streams and reservoirs, and seepage to the ocean. Results from this study also show increasing temperature trend over the years while rainfall trend generally remain unchanged in the study area. Rainfall variability persists hence the potential for floodsand droughts in the region remain. Global and Regional Models predict about 10% to 25% reduction in rainfall and increase in variability in future. Impacts of his change in climate will affect the different types of aquifers in various ways. Increase in temperature and reduction in rainfall will increase evapotranspiration, reduce surface flows and eventually reduce shallow aquifer resources. Coastal aquifers risk upsurge in salinisation from sea level rise and increase in abstractions from dwindling surface water resources. While floods increase the risk of contamination to shallow aquifers droughts put pressure on all aquifers especially deep aquifers which are considered to be more reliable due to the fact that they are far removed from surface conditions. Future population growth and increase in freshwater demand will put more pressure on groundwater. Recharge to groundwater have been over-estimated in certain areas in the past leading to high abstraction rates from boreholes causing extensive groundwater storage depletion evident by high decline in groundwater levels in these areas and hampering sustainable management of the aquifer resources. Over-abstraction have resulted in loss of stream flow and baseflow reduction to streams during summer, complete loss of springs and reduction of flow to others. Flow to wetlands, riparian vegetation, and sometimes loss and shifts in dependent ecosystems have also resulted from over-abstraction. Sustainability has spatial and temporal implications due to changing climate and demand. The study recommends adaptive management practices in which several factors are considered in managing groundwater together with surface water resources in order to maintain ecological and environmental integrity. The KKRWSS and other groundwater supply schemes in the Western and Eastern Cape Provinces demonstrate the huge potential of the TMG to provide freshwatersupply for domestic and irrigation water needs however, the huge decline in groundwater levels due to over-abstraction in the KKRWSS and other groundwater schemes underscores the need for sustainable utilization of the TMG groundwater resources for present and future generations with minimal impacts on the quality, dependent hydrological and ecosystems as well as the environment. / South Africa

Page generated in 0.0393 seconds