Spelling suggestions: "subject:"sagebrush stepped"" "subject:"sagebrush stepper""
11 |
Use of Plant Growth Regulators to Expand the Period of Sagebrush Seed Germination and Reduce the Risk of Restoration Failure: Laboratory TrialsKeefer, Chelsea Elizabeth 01 July 2019 (has links)
Seed germination during unhospitable environmental conditions can be a major barrier to direct seeding efforts in dryland systems. In the sagebrush steppe, Artemisia tridentata Nutt. ssp. wyomingensis and Artemisia arbuscula are important shrub species that are being used in restoration, but seeding success is highly sporadic due to inter-annual and intra-seasonal weather variability. Altering and expanding the period of germination, as a form of bet-hedging, may improve plant establishment. Our objective was to determine if we could expand the period of germination using plant growth regulators (PGRs) applied in a conglomerated seed coating treatment. In a laboratory study, the seed was either left untreated, conglomerated separately with two concentrations of a germination inhibitor, abscisic acid (ABA), or with two different germination promoters, gibberellic acid (GA3) and 1-Aminocyclopropane carboxylic acid (ACC), a precursor to ethylene. Seeds were incubated in a loam soil at five constant temperatures (5-25 C) for approximately three months. Results indicate that seed treatments with PGRs can delay or speed germination. The greatest response to the seed treatments was observed at 5 C. For example, at this temperature PGRs delayed the time for 25% of the seeds to germinate by a maximum of 35 and 21 d and decreased this time by 5 and 25 d for A. t. ssp. Wyomingensis and A. arbuscula, respectively. Field studies are needed to determine if the bet-hedging strategy developed in this study will increase the likelihood that some seeds will germinate during periods that are more favorable for plant establishment.
|
12 |
Plant Establishment and Soil Microenvironments in Utah Juniper Masticated WoodlandsYoung, Kert R. 05 July 2012 (has links) (PDF)
Juniper (Juniperus spp.) encroachment into sagebrush (Artemisia spp.) and bunchgrass communities has reduced understory plant cover and allowed juniper trees to dominate millions of hectares of semiarid rangelands. Trees are mechanically masticated or shredded to decrease wildfire potential and increase desirable understory plant cover. When trees are masticated after a major increase in tree population density and associated decrease in perennial understory cover, there is a risk that invasive annual grasses will dominate because they are highly responsive to the increased resource availability that commonly follows removal of the main resource user. To determine if tree mastication increases resource availability and subsequently favors invasive annual or perennial grasses, we compared soil temperature, water, and nutrient microenvironmental conditions and seedling establishment and growth. We used the major rangeland weed, cheatgrass (Bromus tectorum L.), to represent invasive annual grasses and Anatone bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) A. Löve), a natural accession of native bluebunch wheatgrass, to represent the perennial grasses of the sagebrush-bunchgrass plant community. These comparisons were made between and within paired-adjacent masticated and untreated areas at three locations in Utah dominated by Utah juniper (Juniperus osteosperma (Torr.) Little). Juniper tree mastication generally increased resource availability with masticated areas having greater soil temperature, soil water availability, and soil N supply rates than untreated areas. Prior to juniper tree mastication litter mounds were not found to be resource islands probably because juniper trees themselves were using subcanopy soil water and nutrients. After juniper tree mastication and elimination of these predominant resource users, litter mounds served as resource islands with greater soil water availability and N supply rates than bare interspaces during the critical time for seedling establishment in spring. Plant growth followed in line with greater resource availability after tree mastication with masticated areas having more productive although fewer invasive-annual and perennial grass seedlings than untreated areas. These results suggest that increases in resource availability and warmer spring temperatures associated with mastication will not necessarily favor invasive annual over perennial grass seedling establishment. Resilience of the sagebrush-bunchgrass community to return to dominance after juniper control will likely be greatly influenced by how much of the sagebrush-bunchgrass community remains following tree control and the intensity of propagule pressure by invasive species. If only invasive annuals remain when the trees are treated then invasive annuals would be expected to dominate the post-treatment plant community especially with their ability to establish inside litter mounds unless they were also controlled and perennial grasses planted at the time of treatment.
|
13 |
Small mammal and bird abundance in relation to post-fire habitat succession in mountain big sagebrush (Artemisia tridentata ssp. vaseyana) communitiesHolmes, Aaron L. 28 December 2010 (has links)
Fire is an important disturbance mechanism in big sagebrush (Artemisia
tridentata) communities, yet little is known about wildlife population dynamics during
post-fire habitat succession. I estimated the abundance of small mammals and birds in
relation to fire history in mountain big sagebrush (A.t. spp. vaseyana) communities on the
Sheldon National Wildlife Refuge in the northwestern Great Basin, USA. I employed a
chronosequence approach that took advantage of multiple wildfires that had occurred in
similar plant communities between 7 to 20 years prior to sampling.
Belding’s ground squirrel (Spermophilus beldingii) were approximately 10 times
as abundant in burned areas relative to adjacent unburned habitat regardless of the
number of years since a burn occurred. Deer mouse (Peromyscus maniculatus) was more
abundant on more recently burned sites, but not at sites closer to full vegetation recovery.
Great basin pocket mouse (Perognathus parvus), sagebrush vole (Lemmiscus curtatus),
and least chipmunk (Tamius minimus) abundance did not vary as a function of fire
history, but some variance was explained by habitat features such as rocky areas and the
canopy characteristics of sagebrush.
Bird diversity was higher in unburned habitats irrespective of the number of years
of recovery out to 20 years. Nine of the 12 most widely occurring species of birds in the
study have population densities influenced by fire or post-fire habitat succession to at
least 13 to 20 years following a burn. Sage Sparrow (Amphispiza belli), Black-throated
Sparrow (Amphispiza bilineata), and Spotted Towhee (Pipilo maculatus) occurred at
relatively low densities and were nearly restricted to unburned habitats. Green-tailed
Towhee (Pipilo Chlorurus), Gray Flycatcher (Empidonax wrightii), American Robin
(Turdus migratorius), and Brown-headed Cowbird (Molothus ater) occurred at lower
densities in burned areas than adjacent unburned areas although the relationship was not
strong for the latter two species. The magnitude of the difference in density between
burned and unburned sites within a landscape diminished with the number of years of
vegetation recovery for Green-tailed Towhee. Brewer’s Sparrow (Spizella brewerii)
occurred at lower densities relative to adjacent habitat in the most recent burn, but
occurred at higher densities after 20 years of habitat succession, suggesting a positive
response with a multiple decade lag period. Horned Lark (Eremophila alpestris) and
Vesper Sparrow (Pooecetes gramineus) respond positively to fire, but densities were
similar to unburned areas after 20 years of habitat succession.
An ordination analysis captured 86% of the variation in 12 bird species with 3
orthogonal axes. My research demonstrates that strong community structure exists for
birds associated with mountain big sagebrush habitats, and that fire influences
community structure for multiple decades. / Graduation date: 2011 / Access restricted to the OSU Community at author's request from Dec. 22, 2010 - Dec. 22, 2011.
|
Page generated in 0.0605 seconds