• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 28
  • 10
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 119
  • 46
  • 42
  • 19
  • 19
  • 17
  • 16
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transitions between ecological regimes in salinising wetlands /

Sim, Lien Louise. January 2005 (has links)
Thesis (Ph.D.)--Murdoch University, 2005. / Thesis submitted to the Division of Science and Engineering. Bibliography: leaves 267-287.
2

The environmental impact and sustainability of irrigation with coal-mine water

Beletse, Yacob Ghebretinsae. January 2008 (has links)
Thesis (PhD.)(Plant Production))--University of Pretoria, 2008. / Includes summary. Includes bibliographical references.
3

A study of salinization process in some soils of Beheira Governorate, Egypt, U.A.R

Antar, Ibrahim Mohamed Mostafa. January 1966 (has links)
Thesis (M.S.)--University of Alexandria. / Bibliography: p. 41-42.
4

Hydrosalinity modelling of the Berg River using ACRUSalanity /

Kamish, Wageed. January 2008 (has links)
Thesis (MScIng)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
5

The value of iodide as a geochemical indicator of sources of salinity in groundwater

Maida, Susan Marie, 1959- January 1989 (has links)
Iodine, a minor constituent in ground water, is valuable as an indicator of subsurface sources of salinity. A review of iodine geochemistry reveals that exceptions to conservative behavior include sorption onto iron and aluminum oxides and incorporation into marine organic matter with additional enrichment due to sorption. Data from the Milk River aquifer in Alberta, Canada indicate that iodide in the ground water is derived from residual waters in the fine grained, marine sediments within the sandstone formation. This localized enrichment of iodide is superimposed on a more general enrichment of halides downgradient from the recharge area, probably due to ion filtration.
6

Cloning and characterization of ion transporter genes from a salt-tolerant soybean variety.

January 2004 (has links)
Tsai Sau-Na. / Thesis submitted in: 2003. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 157-170). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Acknowledgements --- p.vii / General Abbreviations --- p.ix / Abbreviations of Chemicals --- p.xii / Table of contents --- p.xiv / List of figures --- p.xx / List of tables --- p.xxii / Chapter 1. --- Literature Review --- p.1 / Chapter 1.1 --- Salinization is a global problem --- p.1 / Chapter 1.2 --- Causes of soil salinization in agricultural lands --- p.2 / Chapter 1.3 --- Toxicity of salinity in plants --- p.4 / Chapter 1.3.1. --- Physiological drought --- p.4 / Chapter 1.3.2. --- Nutritional imbalance --- p.5 / Chapter 1.3.3 --- Specific ion toxicity --- p.6 / Chapter 1.4 --- Plant adaptation to salinity --- p.7 / Chapter 1.5 --- Ion transport proteins in plant --- p.10 / Chapter 1.5.1 --- "Pump, channel and carrier" --- p.10 / Chapter 1.5.2 --- Pumps --- p.11 / Chapter 1.5.2.1 --- P-ATPase --- p.11 / Chapter 1.5.2.2 --- V-ATPase --- p.12 / Chapter 1.5.2.3 --- PPiase --- p.12 / Chapter 1.5.3 --- Cation channels --- p.13 / Chapter 1.5.3.1 --- K+ channels --- p.13 / Chapter 1.5.3.1.1 --- Shaker family --- p.14 / Chapter 1.5.3.1.1.1 --- KIRCs --- p.16 / Chapter 1.5.3.1.1.2 --- KORCs --- p.17 / Chapter 1.5.3.1.1.3 --- VICs --- p.18 / Chapter 1.5.3.1.2 --- Kir family --- p.18 / Chapter 1.5.3.1.2 --- KCO family --- p.19 / Chapter 1.5.3.2 --- Ca2+ channels --- p.20 / Chapter 1.5.3.2.1 --- TPC family --- p.20 / Chapter 1.5.3.2.2 --- CNGC family --- p.21 / Chapter 1.5.4 --- Anion Channels --- p.22 / Chapter 1.5.5 --- Carriers --- p.23 / Chapter 1.5.5.1 --- High affinity K+ carriers --- p.23 / Chapter 1.5.5.1.1 --- HKT transporter --- p.24 / Chapter 1.5.5.1.2 --- HAK/KUP transporter --- p.25 / Chapter 1.5.5.2 --- Cation/H+ antiporters --- p.26 / Chapter 1.5.5.2.1 --- Na+/H+ antiporter --- p.27 / Chapter 1.5.5.2.2 --- Ca2+/H+ antiporters --- p.30 / Chapter 1.6 --- Ion homeostasis and salt tolerance --- p.31 / Chapter 1.6.1 --- Ion transporters involved in ion homeostasis during salt stress --- p.31 / Chapter 1.6.2 --- Sodium uptake under salt stress --- p.32 / Chapter 1.6.4 --- Sodium extrusion --- p.36 / Chapter 1.6.5 --- Intracellular compartmentation --- p.37 / Chapter 1.6.6 --- Genetic engineering of ion transporter for improvement of salt tolerance --- p.40 / Chapter 1.7 --- Soybean as a target for studies of salt tolerance --- p.41 / Chapter 1.7.1 --- Economic importance of soybean --- p.41 / Chapter 1.7.2 --- Salt tolerant soybean in China --- p.43 / Chapter 1.7.3 --- Previous studies of Wenfeng7 and Union in our laboratory --- p.43 / Chapter 1.7.4 --- Hypothesis and research strategy of my project --- p.46 / Chapter 2. --- Materials and methods --- p.49 / Chapter 2.1 --- Materials --- p.49 / Chapter 2.1.1. --- Plant materials --- p.49 / Chapter 2.1.2. --- Bacteria strains and plasmid vectors --- p.50 / Chapter 2.1.3. --- Growth media for soybeans and A. thaliana --- p.50 / Chapter 2.1.4. --- Chemicals and reagents used --- p.50 / Chapter 2.1.5. --- Solutions used --- p.51 / Chapter 2.1.6. --- Commercial kits used --- p.51 / Chapter 2.1.7. --- Equipment and facilities used --- p.51 / Chapter 2.1.8. --- Primers used --- p.51 / Chapter 2.2 --- Methods --- p.52 / Chapter 2.2.1 --- Cloning of ion transporters --- p.52 / Chapter 2.2.1.1. --- Sample preparation --- p.52 / Chapter 2.2.1.2 --- Total RNA extraction --- p.52 / Chapter 2.2.1.3 --- Primer design for RACE --- p.53 / Chapter 2.2.1.4 --- 5´ة& 3´ة RACE of ion transporters --- p.54 / Chapter 2.2.1.5 --- Subcloning of RACE cDNA fragments --- p.56 / Chapter 2.2.1.6 --- PCR screening of white colonies --- p.57 / Chapter 2.2.1.8 --- Preparation of recombinant plasmid for sequencing --- p.57 / Chapter 2.2.1.9 --- Sequencing and homology search --- p.58 / Chapter 2.2.1.10 --- Cloning of full length coding regions of ion transporters --- p.58 / Chapter 2.2.1.11 --- "Sequence comparison, analysis and multialignment" --- p.62 / Chapter 2.2.2 --- Gene expression profiles --- p.62 / Chapter 2.2.2.1 --- Sample stepwise treatment with different concentration of NaCl --- p.62 / Chapter 2.2.2.2 --- Sample treatment with different Hoagland's solution supplement with 1.2% NaCl --- p.63 / Chapter 2.2.2.3 --- Preparation of single-stranded DIG-labeled PCR probes --- p.64 / Chapter 2.2.2.4 --- Testing the concentration of DIG-labeled probes --- p.65 / Chapter 2.2.2.5 --- Northern blot technique --- p.66 / Chapter 2.2.2.6 --- RT-PCR (Reverse-transcription polymerase chain reaction) --- p.67 / Chapter 2.2.3 --- Functional test using transgenic plants --- p.68 / Chapter 2.2.3.1 --- Preparation of chimeric gene constructs and recombinant plasmids --- p.68 / Chapter 2.2.3.2 --- "Eletroporation of Agrobacterium, tumefaciens" --- p.69 / Chapter 2.2.3.3 --- Seed sterilization and plant growth --- p.70 / Chapter 2.2.3.4 --- Vacuum infiltration transformation of Arabidopsis thaliana --- p.71 / Chapter 2.2.3.5 --- Selection of hemizygous and homozygous transgenic plants --- p.72 / Chapter 2.2.3.6 --- Genomic DNA extraction and PCR screening --- p.72 / Chapter 2.2.3.7 --- RT-PCR and Northern Blot of transgenic plants --- p.73 / Chapter 2.2.3.8 --- Functional test on MS plate supplemented with NaCl --- p.73 / Chapter 2.2.3.9 --- Functional test on sand supplemented with Hoagland's solution and NaCl --- p.74 / Chapter 3. --- Results --- p.76 / Chapter 3.1 --- "Cloning of Nhx, AKT1 and CLC from Wenfeng7 and Union" --- p.76 / Chapter 3.1.1 --- "Cloning of 5'- & 3'- RACE cDNA fragments of Nhx, AKT1 and CLC" --- p.76 / Chapter 3.1.2 --- "Cloning of full length coding regions of Nhx, AKT1 and CLC from Wenfeng7 and Union" --- p.77 / Chapter 3.1.3 --- "Sequence comparison, analysis and multialignment" --- p.82 / Chapter 3.1.3.1 --- Sequence analysis and multialignment of GmNhx1 and GmNhx2 --- p.82 / Chapter 3.1.3.2 --- Sequence analysis and multialignment of GmAKTl --- p.92 / Chapter 3.1.3.3 --- Sequence analysis and multialignment of GmCLC --- p.101 / Chapter 3.2 --- "Gene expression profiles of GmNhx, GmCLC and GmAKTl" --- p.111 / Chapter 3.2.1 --- Induction of GmNhx and GmCLC gene expression by NaCl in different Hoagland's solution --- p.111 / Chapter 3.2.2 --- RT-PCR using gene specific primers to distinguish the gene expression of GmNhx1 and GmNhx2 --- p.116 / Chapter 3.2.3 --- RT-PCR analysis of the transcripts of GmAKTl in Wenfeng7 and Union --- p.118 / Chapter 3.3 --- Functional analysis of transgenic plants in salt tress --- p.120 / Chapter 3.3.1 --- "Construction of chimeric gene of GmNhx1´ة GmNhx2, GmCLC and GmAKT1 into V7 vector" --- p.120 / Chapter 3.3.2 --- Transformation of chimeric gene constructs into A. tumefaciens --- p.122 / Chapter 3.3.3 --- Vacuum infiltration transformation of Arabidopsis thaliana and selection of transgenic plants --- p.123 / Chapter 3.3.4 --- PCR screening of transgene from transgenic plants --- p.130 / Chapter 3.3.5 --- PT-PCR and Northern blot analysis of the transgene transcripts --- p.133 / Chapter 3.3.6 --- Functional test of transgenic plants under salt stress --- p.135 / Chapter 4. --- Discussion --- p.139 / Chapter 4.1 --- "Isolation of GmNhx, GmAKTl and GmCLC from Wenfeng7 and Union" --- p.139 / Chapter 4.1.1. --- GmNhx1 and GmNhx2 are putative vacuolar Na+/H+ antiporters from Wenfeng7 and Union --- p.139 / Chapter 4.1.2. --- GmAKT1 is an inward-rectifying K+ channel from Wenfeng7 and Union --- p.141 / Chapter 4.1.3 --- GmCLC is a putative vacuolar voltage-dependent chloride channel from Wenfeng7 and Union --- p.144 / Chapter 4.2 --- "Gene expression profiles of GmNhx, GmAKT1 and GmCLC from Wenfeng7 and Union" --- p.146 / Chapter 4.2.1 --- Differential expression between GmNhx1 and GmNhx2 in Wenfeng7 and Union --- p.146 / Chapter 4.2.2 --- Coordinated expression of GmNhx and GmCLC in wenfeng7 and Union --- p.147 / Chapter 4.2.3 --- GmAKT1 is preferentially expressed in roots of wenfeng7 and Union and presented in low abundance --- p.148 / Chapter 4.3 --- Functional tests of transgenic Arabidopsis plants --- p.150 / Chapter 4.3.1 --- Screening of heterozygous and homozygous transgenic plant --- p.150 / Chapter 4.3.2 --- Function tests of heterozygous and homozygous transgenic plants under salt stress --- p.151 / Chapter 4.3.3 --- Gene silencing in transgenic plants --- p.152 / Chapter 5. --- Conclusion and perspectives --- p.155 / References --- p.157 / "Appendix I: Buffer, restriction and modifying enzymes" --- p.171 / Appendix II: Major chemicals and reagents used in this research --- p.171 / Appendix III: Major common solutions used in this research --- p.174 / Appendix IV: Commercial kits used in this research --- p.177 / Appendix V: Major equipment and facilities used --- p.177
7

GmSAL1 enhances vacuolar sodium ion compartmentalization and ROS scavenging in a calcium dependent manner.

January 2008 (has links)
Koo, Siu Chung Nicolas. / Thesis submitted in: November 2007. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 78-86). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Chinese Abstract --- p.v / Acknowledgements --- p.vi / Abbreviations --- p.viii / Table of contents --- p.xi / List of figures --- p.xv / List of tables --- p.xvii / Chapter 1. --- General Introduction / Chapter 1.1 --- General introduction to salt tolerance in plant --- p.1 / Chapter 1.1.1 --- Adverse effecst of high salinity in plant cells / Chapter 1.1.1.1 --- Ion toxicity --- p.1 / Chapter 1.1.1.2 --- Disturbed osmotic homeostasis --- p.2 / Chapter 1.1.1.3 --- Oxidative stress --- p.3 / Chapter 1.1.2 --- Major salt tolerance strategy in plant / Chapter 1.1.2.1 --- Maintenance of ion homeostasis --- p.4 / Chapter 1.1.2.2 --- Maintaining osmotic homeostasis --- p.4 / Chapter 1.1.2.3 --- Detoxification of Reactive oxygen species --- p.4 / Chapter 1.2 --- Cytosolic Calcium signal in plant / Chapter 1.2.1 --- General introduction of calcium in plant --- p.6 / Chapter 1.2.2 --- Calcium transport in plant cell --- p.7 / Chapter 1.2.3 --- Cytosolic calcium signals in plant under abiotic stress --- p.9 / Chapter 1.2.4 --- Responding to cytosolic calcium signals --- p.12 / Chapter 1.3 --- Calcium mediated ion homeostasis in plant under salt stress / Chapter 1.3.1 --- General introduction on Calcium dependent ion channels in plant --- p.13 / Chapter 1.3.2 --- SOS family cascade in Arabidopsis --- p.13 / Chapter 1.4 --- The interaction between cytosolic calcium and reactive oxygen species in plants --- p.14 / Chapter 1.5 --- "Calcium signaling mediated by Inositol 1,4,5 triphosphate in plant" --- p.15 / Chapter 1.6 --- Study on HAL2 and its homolog in plant --- p.18 / Chapter 1.7 --- Previous studies on GmSAL1 in Prof. Lam's lab --- p.20 / Chapter 1.8 --- Hypothesis and significant of this project --- p.21 / Chapter 2 --- Materials and Methods / Chapter 2.1 --- Materials / Chapter 2.1.1 --- "Plants, bacterial strains and vectors" --- p.23 / Chapter 2.1.2 --- Chemicals and Regents --- p.25 / Chapter 2.1.3 --- Commercial kits --- p.26 / Chapter 2.1.4 --- Primers and Adaptors --- p.27 / Chapter 2.1.5 --- Equipments and facilities used --- p.27 / Chapter 2.1.6 --- "Buffer, solution, gel and medium" --- p.27 / Chapter 2.1.7 --- Software --- p.28 / Chapter 2.2 --- Methods / Chapter 2.2.1 --- Molecular Techniques / Chapter 2.2.1.1 --- Bacterial cultures for recombinant DNA and plant transformation --- p.29 / Chapter 2.2.1.2 --- Recombinant DNA techniques --- p.29 / Chapter 2.2.1.3 --- Preparation and transformation of Agrobacterium competent cells --- p.30 / Chapter 2.2.1.4 --- Gel electrophoresis --- p.31 / Chapter 2.2.1.5 --- DNA and RNA extractions --- p.32 / Chapter 2.2.1.6 --- Generation of single-stranded DIG-labeled PCR probes --- p.34 / Chapter 2.2.1.7 --- Testing the concentration of DIG-labeled probes --- p.36 / Chapter 2.2.1.8 --- Northern blot analysis --- p.36 / Chapter 2.2.1.9 --- PCR techniques --- p.37 / Chapter 2.2.1.10 --- Sequencing --- p.38 / Chapter 2.2.2 --- Plant cell culture and transformation / Chapter 2.2.2.1 --- Arabidopsis thaliana --- p.39 / Chapter 2.2.2.2 --- Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cells --- p.39 / Chapter 2.2.3 --- Growth and treatment conditions for plants / Chapter 2.2.3.1 --- Growth and salt treatment condition of soybean samples for gene expression studies of GmSAL1 --- p.40 / Chapter 2.2.3.2 --- Root assay of GmSAL1l transgenic Arabidopsis thaliana --- p.41 / Chapter 2.2.4 --- "Cell viability, ROS detection and confocal microscopy" / Chapter 2.2.4.1 --- Cell viability assay --- p.42 / Chapter 2.2.4.2 --- Detection of intracellular contents of Na+ --- p.42 / Chapter 2.2.4.3 --- Detection of Reactive oxygen species (ROS) --- p.42 / Chapter 2.2.4.4 --- Confocal microscopy --- p.43 / Chapter 2.2.4.5 --- Images processing and analysis --- p.43 / Chapter 2.2.5 --- Statistical analysis --- p.44 / Chapter 3 --- Results / Chapter 3.1 --- GmSAL1 sequence analysis --- p.45 / Chapter 3.2 --- Expression of GmSAL1 was induced by NaCl stress --- p.49 / Chapter 3.3 --- Construction of GmSAL1 transgenic tobacco BY-2 cell line --- p.50 / Chapter 3.4 --- Ectopic expression of GmSAL1 alleviates NaCl stress in transgenic tobacco BY-2 cells --- p.52 / Chapter 3.5 --- GmSAL1 enhances vacuolar sodium compartmentalization in transgenic tobacco BY-2 cell under NaCl treatment --- p.55 / Chapter 3.6 --- GmSAL1 helps maintain cell turgidity in transgenic tobacco BY-2 cell under NaCl treatment --- p.58 / Chapter 3.7 --- GmSAL1 enhances ROS scavenging in transgenic tobacco BY-2 cell under NaCl treatment --- p.61 / Chapter 3.8 --- Effect of expressing GmSAL1 in Arabidopsis thaliana under salt stress --- p.64 / Chapter 4 --- Discussion --- p.66 / Chapter 4.1 --- Sequence analysis and enzyme activity of GmSAL1 --- p.68 / Chapter 4.2 --- Gene expression profile of GmSAL1 --- p.70 / Chapter 4.3 --- Functional analysis of GmSAL1 in transgenic tobacco BY-2 cells / Chapter 4.3.1 --- GmSAL1 protects transgenic BY-2 cells under salt treatment --- p.71 / Chapter 4.3.2 --- GmSAL1 regulates Na+ compartmentalization and ROS scavenging in transgenic BY-2 cells under NaCl treatment in a calcium dependent manner --- p.72 / Chapter 4.4 --- Functional tests of GmSAL1 transgenic A. thaliana --- p.75 / Chapter 5 --- Conclusion and perspective --- p.76 / References --- p.78 / "Appendix I: Substrate specificity and Km, Kcat values of GmSAL1 protein" --- p.87 / Appendix II: Restriction and modifying enzymes --- p.89 / Appendix II: Chemicals --- p.90 / Appendix III: Commercial kits --- p.94 / Appendix IV: Equipments and facilities used --- p.95 / "Appendix V: Buffer, solution, gel and medium formulation" --- p.96
8

Chloride and corrosiveness: trends, indices, scales of measurement, and agency management capacity to address freshwater salinization

Kauten, Rebecca Lynn 01 August 2019 (has links)
This study localizes dimensions of freshwater salinization by directly measuring chloride concentrations in ungauged urban streams, assessing the relationship between chloride, copper and zinc in sample data, measures statewide trends for Iowa, and considers the regulatory and cultural environment of managing winter roads. Chloride concentrations in local, urban streams generally persist at higher levels than what is typical of natural Iowa waters. Runoff from snow melt events violate water quality standards, with chloride concentrations more closely resembling sea water than freshwater. Meanwhile, long-term trends at the statewide scale suggest levels are decreasing over time. Dissolved ions in groundwater from limestone aquifers encourage chemical buffering. Surface runoff in urban areas does not contain groundwater but does contain a large amount of salt from roads and other sources. More salt present year-round in streams influenced by surface water hydrology likely increases the potential for storm sewers, bridge decks and other urban infrastructure to corrode. Public agencies take varied approaches to freshwater salinization and related concerns. Regulation focuses on drinking water protection, and accounts for both household and industrial chloride sources. Snow and ice “fighters” see chloride as a tool, whereas scientists and regulated agencies consider it a pollutant of concern. This split leads to inconsistent patterns in decision-making and prioritization. Salt is a commodity, generating billions of dollars for suppliers throughout North America. Industry can play a significant role in solving what may ultimately become one of the most challenging water quality problems of the 21st Century.
9

Effect of salinity on germination and seedling growth of canola (Brassica napus L.) /

Bahizire, François B. January 2007 (has links)
Thesis (MScAgric)--University of Stellenbosch, 2007. / Bibliography. Also available via the Internet.
10

Contextualization and Sodium Diet Implications of Occoquan Reservoir Salinization

Shipman, Caitlin Mariah 17 March 2023 (has links)
Freshwater salinization syndrome is a rising threat globally which results in increased ion concentrations in inland freshwaters. This syndrome threatens healthy aquatic ecosystems and can alter the perception of the potability of finished drinking water. The Occoquan Reservoir, located in Northern Virginia, is a freshwater system that is facing rising salinization. Stakeholders for the reservoir have been convened to address these rising salinization concerns. Among these stakeholders, there are a variety of viewpoints on the significance of the salinization, which is preventing a high level of convergence around this threat. To assist in contextualizing this system, empirical cumulative distribution functions were generated from data gathered from various governmental sources and compared the reservoir's watershed and finished drinking water ion concentrations. These analyses show that the watershed and finished drinking water have some of the highest concentrations of sodium and chloride statewide. Additional investigations determined the trend of sodium increases in finished drinking water since the 1980s. Monte Carlo simulations were ran to determined whether there would be risks to human from ingesting this water should this trend continued. Results from these analyses greatly varied due to the wide range in drinking water ingestion rates. The purpose of these analyses is to assist with stakeholder convergence around the level of threat salinization poses to the reservoir and to initiate discussions of what an acceptable threshold for management could be. / Master of Science / Freshwater salinization syndrome is a rising threat globally which results in increased ion concentrations in inland freshwaters. This syndrome threatens healthy aquatic ecosystems and can alter the perception of the potability of finished drinking water. The Occoquan Reservoir, located in Northern Virginia, is a freshwater that is facing rising salinization. Stakeholders for the reservoir have been convened to address these concerns. Among the stakeholders, there are a variety of viewpoints on the significance of salinization. Various analyses were done to compare the sodium and chloride concentrations in the reservoir's watershed and in the finished drinking water with respective statewide levels. These analyses show that the watershed and finished drinking water have some of the highest concentrations of sodium and chloride statewide. Additional investigations were conducted to determine if there was a human health risk to consuming the finished drinking water. Results from this analysis were highly dependent on how much water an individual consumed. The purpose of these analyses is to assist with stakeholder convergence around the level of threat salinization poses to the reservoir and to initiate discussions of what an acceptable threshold for management could be.

Page generated in 0.1015 seconds