Spelling suggestions: "subject:"salt."" "subject:"valt.""
431 |
Response of grapes to saline irrigation waterArbabzadeh-Jolfaee, Amir Farhad. January 1981 (has links)
Field and greenhouse experiments to determine the response of grapes to saline irrigation water were conducted. The goal of this research were: (1) to study the effect of salinity on grape and wine quantity and quality and (2) to evaluate the degree of salt tolerance of some of the grape rootstocks. For the greenhouse study, seven grape rootstocks were grown in the soil columns irrigated with three levels of salinity, EC of 0.45, 2.5, and 5 mmhos/cm. The later two waters were prepared by adding MgSO₄ and CaC1₂ salts to tap water with EC of 0.45 mmhos/cm. Shoot growth, pruning weight, leaf area, and trunk diameter were significantly reduced by salinity. Reduction in shoot growth and pruning weight were more pronounced than leaf area and trunk diameter. Maximum ECₑ values (1007 reduction in growth) varied from 8.81 mmhos/cm for 41B rootstock to 16.43 mmhos/cm for Ramsey rootstock. Maximum ECₑ for Barbera (Vitis vinifera) was 11.04 mmhos/cm. Based on percent reduction in growth, the relative tolerance of grapes could be arranged as follows: Ramsey > 5BB > SO4 > 1613 > Barbera > 99R > 41B. The field study included two sources of water and six grape rootstocks which were grafted to Barbera. Two sources of irrigation water were city and well water with EC of 0.42 and 2.6 mmhos/cm, respectively. The response of grapes to salinity was evaluated by fruit yield and pruning weight. Well water application significantly reduced fruit yield and pruning weight. The average fruit yield and pruning weight of Barbera grapes with all the rootstocks decreased by 49.5 7e and 26.7 7e with the well water compared to the city water, respectively. Must and wine analysis indicated that salt treated grape had higher total acidity and lower pH. Alcohol of the wines was not affected uniformly by treatment. Except for 99R rootstocks, the color of the wines were darker in city water than well water. Quality of wine from 3309 rootstock was lowered considerably by well water. With well water, only Barbera wine from 5BB rootstock appeared to be commercially acceptable. The six rootstocks differed from each other in their ability to growth in saline condition. Barbera grape grafted on 5BB and Ramsey rootstocks showed higher tolerance to salinity than Barbera on 99R, 3309, Harmony, and 41B rootstocks.
|
432 |
Cotton Fertilizer Experiments in the Salt River ValleyServiss, George H., Hawkins, R. S. 15 September 1928 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
433 |
Cost of Producing Field Crops in the Salt River Valley, ArizonaClark, S. P. 01 October 1931 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
434 |
Selection of asparagine substrate analog and sodium-chloride resistant mutants in Arabidopsis thalianaChen, Futai, 1952- January 1988 (has links)
The inhibitory effects of NaCl, L- and D-asparagine, and asparagine substrate analogs, beta-aspartyl hydroxamate (AAH) and albizziin, alone or in combination on Columbia Arabidopsis seed germination and seedling survival were characterized under aseptic conditions. Germination on an agar medium supplemented with inorganic nutrients was prevented by 200 mM NaCl, 20 mM L-asparagine, 60 mM D-asparagine, 1.4 mM AAH, or 8 mM albizziin. Established seedlings were generally more tolerant to these chemicals than germinating seeds. Exogenous L- and D-asparagine partly reversed the inhibitory effects of NaCl on seed germination. L-asparagine also partly reversed AAH inhibition of germination. A M2 seed bank was created from the self-pollinated progeny of ethyl methane sulfonate treated seeds. Arabidopsis mutants having increased tolerance to NaCl and AAH, but not albizziin, were successfully selected from this seed bank.
|
435 |
Interactions between saline stress and benzyladenine on chili peppers (Capsicum annuum L.)Zegeer, Abreeza May, 1956- January 1989 (has links)
Exogenous application of BA (0, 50, 100 mg ul--1) had no significant effects on tolerance of chili peppers to salt (--0.75 MPa NaCl:CaCl₂, 3:1, w/w) as measured by vegetative and reproductive weights, numbers of reproductive structures, transpiration and total chlorophyll. When peppers were applied with microliter amounts of ¹⁴C labelled benzyladenine (BA; 44,400 dpm 1⁻¹), BA was translocated primarily acropetally from the site of application. Regardless of application site, translocated BA was ported primarily to expanding leaves, and BA was more readily absorbed by leaf as opposed to stem surfaces. Exogenous application of BA (0, 50, 100 mg ul⁻¹) had no significant effects on tolerance of chili peppers to salt (-0.75 MPa NaCl:CaCl₂, 3:1, w/w) as measured by vegetative and reproductive weights, numbers of reproductive structures, transpiration and total chlorophyll.
|
436 |
Conservation biology of the babirusa, Babyrousa babyrussa, in Sulawesi, IndonesiaClayton, Lynn Marion January 1996 (has links)
No description available.
|
437 |
Numerical Simulation of Road Salt Impact at the Greenbrook Well Field, Kitchener, OntarioBester, Michelle January 2002 (has links)
Chloride concentrations at the Greenbrook well field in Kitchener, Ontario, have been steadily increasing over the past several decades and may soon pose a threat to drinking water quality. Drinking water limits at some wells have already been exceeded. The Regional Municipality of Waterloo (RMOW) relies mainly on local groundwater resources for its drinking water supply, and the Greenbrook well field is the oldest of 50 municipal well fields contributing to this supply. Urban growth and the expansion of city limits over the years has surrounded the well field, placing it in a high risk area in need of protection. As such, protection of this water supply is essential until alternative sources can be found. Road salt has been identified as the prime source of the chloride contamination, and various management alternatives and remediation strategies are currently being studied. In order to characterize the behaviour of chloride in the subsurface, an understanding of the mechanisms that control travel of chloride to the water table and through the groundwater system is needed. For the first phase of this work, a 2-D variably-saturated flow and transport model (SWMS-2D) was used to evaluate the effect of seasonal fluctuation in chloride loading to a generic aquifer system. Chloride was applied over the surface of the model in seasonal pulses that correlated with temperature and precipitation. The model showed a dampening of the seasonal response with depth that lead to the conclusion that long-term transport models can neglect seasonal changes in solute loading. For the second phase of this work, a proven 3D finite element transport model (Waterloo Transport Code: WTC) was used to simulate road salt impacts to the well field. Road salt was applied over selected roads throughout the steady-state capture zone via a type 3 (Cauchy) boundary that varies both temporally and spatially with road type and location. After calibrating the model from 1945 to 2002 to chloride concentrations using the weighted average of 5 Greenbrook production wells, the model was run to the year 2041 to assess future implications. Remediation strategies were also investigated via 6 predictive scenarios in which chloride applications were reduced by varying degrees. The results of this phase will be used by the RMOW in cost-benefit analyses of alternative de-icing approaches versus de-chlorination treatment of the well water.
|
438 |
Hydrodynamics, temperature and salinity in mangrove swamps in MozambiqueHoguane, Antonio Mubango January 1996 (has links)
No description available.
|
439 |
Study of methyl halide fluxes in temperate and tropical ecosystemsBlei, Emanuel January 2010 (has links)
CH3Br and CH3Cl (methyl halides) are the most abundant natural vectors of bromine and chlorine into the stratosphere and play an important role in stratospheric ozone destruction. The current knowledge of their respective natural sources is incomplete leading to large uncertainties in their global budgets. Beside the issue of quantification, characterisation of possible sources is needed to assist modelling of future environmental change impacts on these sources and hence the stratosphere. This study describes measurements conducted at two temperate salt marsh and three temperate forest sites in Scotland, and one tropical rainforest site in Malaysian Borneo to quantify and characterise natural methyl halide producing processes in these respective ecosystems. Measurements were conducted with static enclosure techniques, and methyl halide fluxes were calculated from the concentration difference between blank/background and afterenclosure samples. Methyl halide concentrations were determined via oxygen-doped GCECD with a custom-built pre-concentration unit. External factors such as photosyntheticallyactive radiation (PAR), total solar radiation, air temperature, soil temperature, internal chamber temperature and soil moisture were recorded in parallel to the enclosures to determine possible dependencies. Salt marsh studies were carried out at Heckie’s Hole in East Lothian, and Hollands Farmin East Dumfriesshire for 2 years. The study subjects were salt marsh plants that were enclosed during daylight hours in transparent enclosures for 10min each at 2–4 week intervals throughout the year. Parallel to this monitoring programme, systematic manipulation experiments and diurnal studies were carried out to learn more about the possible influence of potential drivers such as sunlight and temperature. Mean annual net fluxes ( standard deviation (sd)) were 300 44 ngm-2 h-1 for CH3Br and 660 270 ngm-2 h-1 for CH3Cl, with fluxes of both gases following a diurnal as well as an annual cycle, being lowest during winter nights and highest during summer days. A possible link between variations of daytime fluxes over the course of a year and changes in temperature was found. CH3Cl and CH3Br fluxes were positively correlated to each other and average fluxes of CH3Cl were linked to dry mass of certain species such as Puccinellia maritima, Aster tripolium, Juncus gerardi and Plantago maritima as found at the different measurement locations. No link between methyl halide fluxes and total halogen content or halogen concentration of the enclosed vegetation was found. Work in temperate forests was carried out for over one year at Fir Links, a mixed beech/ sycamore forest in East Lothian, and on one occasion each in Griffin Forest, a sitka spruce plantation in Perthshire, and finally the Hermitage of Braid, a mixed woodland park in Edinburgh. The study subject was leaf and needle litter which was enclosed in opaque 12 L containers for 10min–24h. During enclosure, internal chamber temperature was recorded, and leaf/needle litter water content was determined after enclosure. Combined average CH3Br and CH3Cl fluxes from temperate forest litter were 4.3 10-3 ngg-1 h-1 and 0.91 ngg-1 h-1, respectively. Average fluxes measured from leaf and needle litter were comparable in magnitude and CH3Br and CH3Cl were positively correlated. However no correlation of methyl halide fluxes to either temperature or litter water content was observed. Work at Danum Valley inMalaysian Borneo focused on flux measurements from both trees and leaf litter in a tropical dipterocarp forest. Fluxes from tropical trees were measured with transparent branch chambers at 20min enclosure times whilst methyl halide fluxes from leaf litter were measured with opaque 12 L containers at 24h enclosure times. Mean CH3Br and CH3Cl fluxes from branch enclosures were 0.53 ngg-1 h-1 and 27 ngg-1 h-1, respectively, and CH3Br and CH3Cl fluxes from tropical leaf litter were 1.4 10-3 ngg-1 h-1 and 2.3 ngg-1 h-1 respectively. Again fluxes of CH3Br and CH3Cl were positively correlated but no direct environmental driver for flux variations was found. The magnitude of methyl halide fluxes was species specific with individuals of the genus Shorea generally producing large amounts of methyl halide. Tropical rainforests were confirmed to be potentially the largest single natural source of CH3Cl. Global estimates were derived from extrapolating measured fluxes from the respective global land cover areas. These estimates suggest that the ecosystems examined in this study could account for over 1/3 of global CH3Cl production and up to 13%of global CH3Br production in nature. The ratio of CH3Br to CH3Cl emissions for these ecosystems is likely to be dependent on the abundance of bromine in the plant material with higher bromine content boosting CH3Br production and suppressing CH3Cl production. For this reason salt marshes are only a very minor source of CH3Cl.
|
440 |
Study of the aggregation behaviour of egg yolk lecithin/bile salt mixtures by increasing the ionic strengthMadenci, Dilek January 2009 (has links)
This thesis describes a study of the aggregational behaviour of egg yolk lecithin (EYL), a natural lecithin, and bile salt mixtures especially with respect to an increase of the ionic strength of the solvent. Mixtures of two amphiphiles with very different spontaneous curvature as EYL lecithin and bile salt form mixed micelles and vesicles in aqueous solution. Their properties have been well-studied under physiological conditions, i.e. 150 mM electrolyte concentration and pH 7- 8, while other conditions are still hardly explored. Upon increasing ionic strength the formed structures and the transitional pathways (micelles, coexistence of micelles and vesicles, and vesicles) change the generated structures completely from those observed under physiological conditions. We quantitatively determined these structures formed in a broad range of electrolyte concentrations with various scattering techniques, x-ray, light and neutron scattering and calorimetry. With calorimetry, phase diagrams in the EYL and bile salt concentration phase plane were determined at various ionic strength ranging from physiological salt concentration to up to 1000 mM. Additionally a new electrochemical approach using functionalised electrodes, i.e. sensitive and selective to bile salt, and thus to control the bile salt concentration in solution (concentrations below the critical micellar concentration (cmc)) was attempted, since bile salt removal or injection drives the micelle-to-vesicle or the vesicle-to-micelle transition, respectively, of the mixed aggregational system of EYL/bile salt. Although this control was not achieved within the framework of this thesis, promising results show directions for future experiments.
|
Page generated in 0.0397 seconds