• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 9
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A multi-tracer study of saltwater origin, cross-formational flow, and the geochemical evolution of groundwater in the southern High Plains Aquifer along the western caprock escarpment, east-central New Mexico

Langman, Jeff B. January 2008 (has links)
Thesis (Ph. D.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
12

WELLS IMAGED ABOUT AN INTERFACE: A HELE-SHAW MODEL

Abed, Sami A. A. January 1982 (has links)
No description available.
13

Hydraulics of duckbill valve jet diffusers /

Karandikar, Jaydeep Sharad. January 1997 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1998. / Includes bibliographical references (leaves 115-120).
14

Mechanismus und fluiddynamik der Salzwasserzirkulation im Norddeutschen Becken : Ergebnisse thermohaliner numerischer Simulationen /

Magri, Fabien. January 2005 (has links)
Thesis (doctoral)--Frei Universität Berlin, 2005. / "September 2005"--P. [2] of cover. Added thesis t.p. Includes bibliographical references (p. 93-99). Also available via the World Wide Web.
15

Mixing in complex coastal hydrogeologic systems

Lu, Chunhui 04 April 2011 (has links)
The mixing zone developed at freshwater-seawater interface is one of the most important features in complex coastal hydrogeologic systems, which controls subsurface flow and reactive transport dynamics. Freshwater-seawater mixing-zone development is influenced by many physical and chemical processes, such as characteristics of geologic formation, hydrodynamic fluctuations of groundwater and seawater levels, fluid-rock interactions, and others. Wide mixing zones have been found in many coastal aquifers all over the world. However, the mechanisms responsible for wide mixing zones are not well understood. In this thesis, two hypotheses were proposed to explain wide mixing zones in coastal aquifers: (1) kinetic mass transfer coupled with transient conditions, which create the movement of the mixing zone, may widen mixing zones; and (2) aquifer stratification may widen the mixing zone. The hypotheses were tested by both multiscale numerical simulations and laboratory experiments. Numerical simulations were based on a variable-density groundwater model by varying mass transfer parameters, including immobile porosity, mobile porosity, and mass transfer coefficient, and the hydraulic conductivity contrast between aquifer layers. Laboratory experiments were conducted in a quasi-two-dimensional tank, where real beach sands were installed and foodstuff dyes were used to visualize the development of freshwater-seawater mixing zone. Major conclusions included (1) the mixing zone can be significantly widened when the mass transfer timescale and the period of transient boundary is comparable due to the nonequilibrium mass transfer effects; and (2) a thick mixing zone occurs in low-permeability layer when it overlays upon a fast flow layer. These results not only improve the understanding of the dynamics of mixing-zone development and its associated geochemical processes in coastal aquifers, but also identify hydrogeologic conditions for the model of sharp-interface approximation to be valid. In addition to better understanding the mechanisms and dynamics of mixing zone, this thesis also investigates cost-effective management of coastal groundwater resources. To protect and conserve limited water recourses in coastal regions, interest in aquifer storage and recovery (ASR) has been growing in recent years. ASR is a promising strategy for water resources management and has been widely used in many contaminated and saline aquifers. However, its performance may be significantly constrained by mass transfer effects due to the mobilization of solutes initially residing in immobile domains. Better understanding of kinetic mass transfer effects on ASR is needed in order to aid the decision-making process. A numerical model is developed to simulate ASR performance by combining the convergent and divergent dispersion models with a first-order mass transfer model. By analyzing the concentration history at the pumping well, we obtain simple and effective relationships for investigating ASR efficiency under various mass transfer parameters, including capacity ratio and mass transfer timescales, and operational parameters. Based on such relationships, one can conveniently determine whether a site with mass transfer limitations is appropriate or not for ASR and how many ASR cycles are required for achieving a positive recovery efficiency (RE).
16

WELLS IMAGED ABOUT AN INTERFACE: A MATHEMATICAL MODEL

Fukumori, Eiji January 1982 (has links)
No description available.
17

Water-borne geophysics for Murray River salt-load detection /

Barrett, Brian Edward. January 2003 (has links) (PDF)
Thesis (M.Sc.)--University of Adelaide, Dept. of Geology and Geophysics, 2003. / Includes bibliographical references (leaves 112-115).
18

Saltwater Intrusion in Coastal Aquifers

Park, Chan-Hee 21 November 2004 (has links)
Utilizing the analytical solution of the steady state sharp interface saltwater intrusion model in coastal aquifers, a multi-objective optimization formulation of pumping rates and well locations in a coastal aquifer is formulated to solve problems in water management practice. The proposed optimization problem uses progressive genetic algorithm technique and the method developed is applied to the previous work of Cheng et al. [2000]. Through this analysis, several other applications are provided to demonstrate the use of the model in practical applications. This work is the first to optimize pumping rates as well as well locations simultaneously in coastal aquifer management. Known the limitation of the analytical solution, the work is expanded to cover the physics of saltwater intrusion in a more realistic way. This is variable density flow in a variably saturated porous medium. In this method, mixing between two fluids such as saltwater and freshwater can be described and the porous medium is also expanded to cover saturated and unsaturated zones together. One of the objectives is to develop a three dimensional physical model, verify the model, and apply to various applications in coastal aquifers. The developed model, TechFlow, is used to investigate instability issues associated with the numerical solution of the Elder problem in the perspective that includes physical instability issues associated with density differences used in numerical solutions, sensitivity of the solution to idealization irregularity, and the importance of accurate estimation of the velocity field and its association to the grid density levels that is necessary to solve the problem accurately. Saltwater intrusion hydrodynamics in a beach under the influence of tidal effects is also investigated using TechFlow. Based on the results of TechFlow with the use of various boundary conditions for the transport equation, the saltwater intrusion hydrodynamics in a beach under the influence of tidal effects shows unique dynamics. These solutions are primarily affected by density differences, tidal effects on a mild slope, variably saturated porous medium and finite domain solution condition. TechFlow is also used to investigate saltwater upconing beneath pumping wells both two- and three-dimensional applications.
19

Water-borne geophysics for Murray River salt-load detection

Barrett, Brian Edward. January 2003 (has links) (PDF)
Includes bibliographical references (leaves 112-115) Towed DC Resistivity and Transient Electromagnetic arrays have been trialled for suitability in monitoring salt-loads on the Murray River at Waikerie, South Australia.

Page generated in 0.0735 seconds