• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reverse Water Gas Shift Reaction over Supported Cu-Ni Nanoparticle Catalysts

Lortie, Maxime January 2014 (has links)
CuNi nanoparticles were synthesized using a new polyol synthesis method. Three different CuxNi1-x catalysts were synthesized where x = 20, 50 and 80. The nanoparticles were deposited on carbon, C, gamma-alumina, γ-Al2O3, yttria-stabilized zirconia, YSZ, and samariumdoped ceria, SDC. Each set of catalysts was tested using the Reverse Water Gas Shift, RWGS, reaction under atmospheric pressure and at temperatures ranging from 400°C-700°C. The experiments were repeated 3 times to ensure stability and reproducibility. Platinum nanoparticles were also deposited on the same supports and tested for the RWGS reaction at the same conditions. The CuNi nanoparticles were characterized using a variety of different techniques. Xray diffraction, XRD, measurements demonstrate the resence of two CuNi solid solutions: one Cu rich solid solution, and the other a Ni rich solid solution. X-ray photo electron spectroscopy, XPS, measurements show Cu enrichment on all catalytic surfaces. Scanning electron microscopy, SEM, measurements show CuNi nanoparticles ranging in size from 4 nm to 100 nm. Some agglomeration was observed. SDC showed the best yield with all catalysts. Furthermore, high oxygen vacancy content was shown to increase yield of CO for the RWGS reaction. Cu50Ni50/SDC shows the combination of highest yield of CO and the best stability among CuNi catalysts. It also has similar yields (39.8%) as Pt/SDC at 700°C, which achieved the equilibrium yield at that temperature (43.9%). The catalyst was stable for 48 hours when exposed to high temperatures (600-700°C). There was no CH4 observed during any of the experiments when the partial pressure of the reactant gases was fed stoichiometrically. Partial pressure variation experiments demonstrated the presence of CH4 when the partial pressure of hydrogen was increased to twice the value of the partial pressure of CO2.
2

Synthesis and characterisation of CeO?, Sm?O? and Sm-doped CeO? nanoparticles with unique morphologies

Bugayeva, Natalia January 2006 (has links)
[Truncated abstract] This work was concerned with investigations into the synthesis of Ce(OH)4, Sm(OH)3 and hydrated Ce-Sm mixed oxide nanoparticles with anisotropic morphologies via a chemical precipitation technique. The effect of various experimental parameters including temperature, aging time, ionic environment and thermal treatment on the morphology, structure of nanoparticles as well as elemental homogeneity of the mixed oxide nanoparticles was emphasised. It was shown that different experimental conditions resulted in different particle morphologies. This suggested that by tuning experimental parameters an ultimate goal of nanotechnology, the formation of nanoparticles with desired morphologies and sizes, may be achieved. It was found that by modifying experimental parameters it was possible to influence the development of various morphological and structural characteristics of Ce(OH)4 nanoparticles. The resulting morphologies were fibrous needle-like, rod-like and nanowire particles of various sizes. Characterisation of the nanoparticles was conducted through analysis by X-ray diffraction, surface area analysis and transmission electron microscopy techniques. Investigations into the structure of the hydrated CeO2 nanoparticles were undertaken since it is considered to be a key to the relevant properties of the material. The structure was found to exhibit multiple twinning phenomenon with 5-fold symmetry, with a consequence that atomic planes formed the particle surface. However, upon thermal treatment of needle-like particles, structural transformation was observed that possibly led to the development of more reactive and particle circumferential facets. A structural model and formation mechanism of such structures was proposed. ... A preliminary study into suitability of particle anisotropic morphology for compaction and densification processes was undertaken. Investigations into the sintering behaviour of the particles with anisotropic morphology were conducted on ceria nanoneedles. It was found that these particles displayed favourable sintering characteristics. The final densities of the hydrated ceria needle-like particle samples were achieved as high as 94.1% of the theoretical density after sintering at 1100°C for 5 hours.

Page generated in 0.0583 seconds