• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Numerical simulation of sand casting process

Hock, Kuah Teng January 1987 (has links)
No description available.
12

Optimisation of casting process of sand cast austenitic stainless-steel pump impeller using numerical modelling and additive manufacturing

Mugeri, Hudivhamudzimu 12 1900 (has links)
M. Tech. (Department of Metallurgical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / The production of austenitic stainless-steel pump impellers in foundries present a huge challenge mainly due to its thin-walled blades, pouring temperature, presence of junctions and chemical composition. Two different alloys were used namely nodular cast iron and austenitic stainless-steel. Nodular cast iron was used as a comparison alloy due to its excellent flowability whereas austenitic stainless-steel was chosen due to its attractive corrosion and wear resistant properties. Austenitic stainless-steel alloy showed difficulties during casting because of its chemical composition and freezing range. Thin-walled sections are more susceptible to filling defects like misrun and cold-shut. This results in high scrap rate and high processing costs during high production of thin-walled components. High pouring temperature is considered one of the most effective methods to improve filling ability of thin-walled castings. However, there is a major drawback in using this method owing to the high occurrence of shrinkage defects and hot tearing especially at junctions. 1060 aluminium was used as a benchmark to evaluate the effect of wall thickness on the filling and feeding of thin-walled Al components with complex geometry during sand casting. The aim of this dissertation is therefore to optimize casting process of sand cast austenitic stainless-steel pump impeller. Numerical modelling and additive manufacturing were used to optimize the production of this product. The use of casting simulation software combined with three-dimensional (3D) mould printing technology has enabled optimisation of casting parameters to minimise the occurrence of casting defects. Casting parameters of five test samples of complex geometry and varying thicknesses (1.0 mm;1.5 mm;2 mm;2.5 mm and 3.0 mm) were optimised using MAGMAsoft® at a constant pouring temperature of 700 °C and 1060 Aluminium as an alloy. Simulation and casting results showed that complete filling was only possible at a wall thickness of 3 mm. The simulation results showed that as the wall thickness increased from 1 mm to 3 mm the filling ability increased by 67.5 % whereas experimental casting results showed that filling ability increase by 75 %. The combination of MAGMAsoft® simulation and 3D printed moulds proved to be effective tools in predicting filling and feeding of thin-walled aluminium components during sand casting. MAGMAsoft® casting software was used to simulate metal flow and predict the degree of filling at different pouring temperatures. Test samples were cast using 1060 Aluminium alloy at temperatures of 702 °C, 729 °C, 761 °C, 794 °C, 800 °C and 862 °C. Complete mould filling was predicted at 800 °C using the simulation model and 761°C during actual casting. At temperatures above 761°C tearing at the junction was quite pronounced. An optimal of 761°C pouring temperature was found to be appropriate pouring temperature when casting thin-walled aluminum components using sand casting. MAGMAsoft® casting software proved to be an effective tool in optimizing filling and feeding of thin-walled aluminium components during sand casting. Nodular cast iron pump impeller was optimized at 1500 °C using MAGMAsoft® and 3D mould printing technology. Design variables used were feeder radius (17 mm, 18 mm, 19 mm and 20 mm), feeder height (32 mm, 33 mm, 34 mm, 35 mm) and number of feeders of (3, 4 and 5). Simulation and casting results showed a completely-filled casting. The high fluidity of nodular cast iron promotes mould filling ability and prevent any form of misrun defect. Minimum shrinkage was noted at the junctions and top surface of the casting. A new design was proposed to eliminate shrinkage defects at the junctions of the nodular cast iron pump impeller. The design used a tapered circular runner bar with straight ingates. Optimization of nodular cast iron was now done at 1390 °C with the use of MAGMAsoft® and real casting was done 1385 °C. Simulation and casting were in correlation to each other since both showed completely-filled mould cavity with no misrun, cold-shut and shrinkage porosity defect. Simulation proved to be an effective tool in optimizing filling and solidification of nodular cast iron during sand casting. Austenitic stainless-steel pump impeller was optimized at 1500 °C using MAGMAsoft® and 3D mould printing technology. A high quality mould and core print were printed with the use of Voxeljet VX1000 at a minimum period of time. Design variables used were feeder radius (17 mm, 18 mm, 19 mm and 20 mm), feeder height (32 mm, 33 mm, 34 mm, 35 mm) and number of feeders of (3, 4 and 5). An increase in feeder size and the number of feeders greatly reduced hot spot and porosity of the casting but it also reduced the casting yield. The quality of the casting was found to be inversely proportional to the casting yield. Simulation showed a completely-filled casting with actual casting showing only 50 % filling ability. High viscosity of the molten metal and thin walled blades promote quick solidification which caused misrun defects. A new design was proposed to eliminate misrun defects of the first design. MAGMAsoft® was used to optimize this design at 1550 °C. The design used a tapered circular runner bar with tapered ingates. The actual casting showed improved filling ability from 50 % to 80 % while simulation showed completely-filled mould cavity (100 %). Major factors which contributed to low filling ability of austenitic stainless-steel pump impeller were chemistry, runner system and men. Numerical modelling and additive manufacturing did optimize filling and feeding of sand cast austenitic stainless-steel pump impeller.
13

Determining When to Use 3D Sand Printing: Quantifying the Role of Complexity

Almaghariz, Eyad S. 11 June 2015 (has links)
No description available.
14

An Alternative Process Including Sand Casting, Forging And Heat Treatment Of 30mm Diameter X48crmov8-1 Tool Steel

Agacik, Ihsan Alp 01 October 2012 (has links) (PDF)
Shear blades are mostly made of cold-work tool steels and manufactured by rolling process. Rolling process is performed not only for forming the tool but also for improving the mechanical properties. In this study, an alternative method, involving sand casting, hot forging and heat treatment processes to manufacture the shear blades, has been proposed. In the proposed method, plastic deformation will be carried out by means of forging instead of rolling. The material has been selected as X48CrMoV8-1. For both of casting and forging processes, simulations have been conducted by using Computer Aided Engineering Software. According to the results of casting process simulation, the billets have been poured. These billets have been soft annealed first and then taken as the initial raw material for the forging process. After the forging process, quenching and tempering processes have been applied. The specimens have been taken as cast, as forged and as tempered and the microstructural analysis and mechanical tests have been performed on these. The same tests and analysis have been repeated for a commercially available shear blade sample which is manufactured by rolling. All these investigations have shown that the properties of the forged shear blade are very similar to the rolled shear blade. Therefore, the new proposed method has been verified to be used as an alternative manufacturing method for the cold-work tool steel shear blades.
15

Development Of Automobile Chassis Parts Via Aluminum Extrusion And Sand Casting Technology

Demirel, Onur 01 October 2012 (has links) (PDF)
Due to the environmental issues related with fuel consumption and additionally passenger safety, aluminum space frame chassis is promising a big opportunity to design a lightweight structure with a high stiffness. Despite the lower stiffness and strength of aluminum in comparison to the conventional steel chassis, it can be compensated with changing thickness and design of structure by space frame geometry In this study, instead of using steel for automobile chassis, main goal is producing a space frame structure with using aluminum in an extrusion and sand casting processes and improve the stiffness. Chassis is designed according to calculations for moment of inertia, torsional and bending stiffness and in sufficient structural stiffness which can compete with steel chassis. Static finite element analysis was carried out to understand the chassis bending, torsional stiffness and fatigue behaviors. For frontal collisions, dynamic finite element analysis was also done to determine increases in the energy absorbance, specific energy absorbance and peak force for passenger safety. Aluminum profiles were produced by hot extrusion and joined with sand casting parts by TIG welding to manufacture a space frame structure. For main chassis profile, 6063 series of aluminum alloy was selected due to availability for extrusion process, weldability and having sufficient tensile strength and percent elongation and treatment response. Three point bending test was carried out to determine flexural strength. Moment of inertia calculations were done. Some parts such as side frame and shock absorber tower were produced by sand casting method. A similar composition to Silafont &ndash / 36 aluminum alloy was selected because of its high fluidity and good mechanical properties / despite it is a die cast alloy. Tensile, hardness and Charpy impact test were conducted to determine the mechanical characteristics of Silafont - 36 sand cast alloy. In addition to microstructure features and thermal analysis were also carried out to achieve sufficient alloy properties. Heat affected z one was investigated by hardness and tensile test to determine the mechanical properties change after welding process. In this space frame development study, A, B and C pillar parts were produced by Al &ndash / Si sand casting and T6 heat treatment then welded together by TIG welding and finally assembled on the bottom chassis frame produced by using 6063 extrudes welded by 4000 series electrodes. The space frame chassis was studied by also computer simulation to test and see critical points which must be modified during manufacturing. Besides the experimental and theoretical studies, space frame was also produced at the same time. According to the experimental results, the feasibility of the production of lightweight and solid chassis structure was achieved.
16

Riser Feeding Evaluation Method for Metal Castings Using Numerical Analysis

Ahmad, Nadiah January 2015 (has links)
No description available.
17

A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure

Snelling, Dean Andrew Jr. 09 March 2015 (has links)
The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates potential differences in material properties (microstructure, porosity, mechanical strength) of A356 — T6 castings resulting from two different commercially available Binder Jetting media and traditional 'no-bake' silica sand. It was determined that they yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength. They differed in sand tensile strength, hardness, and density. Additionally, two critical sources of process constraints on part geometry are examined: (i) depowdering unbound material from intricate casting channels and (ii) metal flow and solidification distances through complex mold geometries. A Taguchi Design of Experiments is used to determine the relationships of important independent variables of each constraint. For depowdering, a minimum cleaning diameter of 3 mm was determined along with an equation relating cleaning distance as a function of channel diameter. Furthermore, for metal flow, choke diameter was found to be significantly significant variable. Finally, the author presents methods to process complex ceramic structure from precursor powders via Binder Jetting AM technology to incorporate into a bonded sand mold and the subsequently casted metal matrix. Through sintering experiments, a sintering temperature of 1375 °C was established for the ceramic insert (78% cordierite). Upon printing and sintering the ceramic, three point bend tests showed the MMCs had less strength than the matrix material likely due to the relatively high porosity developed in the body. Additionally, it was found that the ceramic metal interface had minimal mechanical interlocking and chemical bonding limiting the strength of the final MMCs. / Ph. D.
18

Design, Fabrication and Testing of Fiber-Reinforced Cellular Structures with Tensegrity Behavior using 3D Printed Sand Molds

Jorapur, Nikhil Sudhindrarao 15 February 2017 (has links)
The overall goal of this work is to improve the structural performance of cellular structures in bending applications by incorporating tensegrity behavior using long continuous fibers. The designs are inspired by the hierarchical cellular structure composition present in pomelo fruit and the structural behavior of tensegrity structures. A design method for analyzing and predicting the behavior of the structures is presented. A novel manufacturing method is developed to produce the cellular structures with tensegrity behavior through the combination additive manufacturing and metal casting techniques. Tensegrity structures provide high stiffness to mass ratio with all the comprising elements experiencing either tension or compression. This research investigates the possibility of integrating tensegrity behavior with cellular structure mechanics and provides a design procedure in this process. The placement of fibers in an octet cellular structure was determined such that tensegrity behavior was achieved. Furthermore, using finite element analysis the bending performance was evaluated and the influence of fibers was measured using the models. The overall decrease in bending stress was 66.6 %. Extending this analysis, a design strategy was established to help designers in selecting fiber diameter based on the dimensions and material properties such that the deflection of the overall structure can be controlled. This research looks to Additive Manufacturing (AM) as a means to introduce tensegrity behavior in cellular structures. By combining Binder Jetting and metal casting a controlled reliable process is shown to produce aluminum octet-cellular structures with embedded fibers. 3D-printed sand molds embedded with long continuous fibers were used for metal casting. The fabricated structures were then subjected to 4 point bending tests to evaluate the effects of tensegrity behavior on the cellular mechanics. Through this fabrication and testing process, this work addresses the gap of evaluating the performance of tensegrity behavior. The overall strength increase by 30%. The simulation and experimental results were then compared to show the predictability of this process with errors of 2% for octet structures without fibers and 6% for octet structures with fibers. / Master of Science
19

Tool manufacturing by metal casting in sand moulds produced by additive manufacturing processes

Nyembwe, Kasongo Didier January 2012 (has links)
Thesis (D. Tech. ( Mechanical Engineering )) - Central University of technology, Free State, 2012 / In this study an alternative indirect Rapid Tooling process is proposed. It essentially consists of producing sand moulds by Additive Manufacturing (AM) processes followed by casting of tools in the moulds. Various features of this tool making method have been investigated. A process chain for the proposed tool manufacturing method was conceptually developed. This process chain referred to as Rapid Casting for Tooling (RCT) is made up of five steps including Computer Aided Design (CAD) modeling, casting simulation, AM of moulds, metal casting and finishing operations. A validation stage is also provided to determine the suitability of the tool geometry and material for RCT. The theoretical assessment of the RCT process chain indicated that it has potential benefits such as short manufacturing time, low manufacturing cost and good quality of tools in terms of surface finish and dimensional accuracy. Focusing on the step of AM of the sand moulds, the selection of available AM processes between the Laser Sintering (LS) using an EOSINT S 700 machine and Three Dimensional Printing using a Z-Corporation Spectrum 550 printer was addressed by means of the Analytic Hierarchy Process (AHP). The criteria considered at this stage were manufacturing time, manufacturing cost, surface finish and dimensional accuracy. LS was found to be the most suitable for RCT compared to Three Dimensional Printing. The overall preferences for these two alternatives were respectively calculated at 73% and 27%. LS was then used as the default AM process of sand moulds in the present research work. A practical implementation of RCT to the manufacturing of foundry tooling used a case study provided by a local foundry. It consisted of the production of a sand casting pattern in cast iron for a high pressure moulding machine. The investigation confirmed the feasibility of RCT for producing foundry tools. In addition it demonstrated the crucial role of casting simulation in the prevention of casting defects and the prediction of tool properties. The challenges of RCT were found to be exogenous mainly related to workmanship. An assessment of RCT manufacturing time and cost was conducted using the case study above mentioned as well as an additional one dealing with the manufacturing of an aluminium die for the production of lost wax patterns. Durations and prices of RCT steps were carefully recorded and aggregated. The results indicated that the AM of moulds was the rate determining and cost driving step of RCT if procurement of technology was considered to be a sunk cost. Overall RCT was found to be faster but more expensive than machining and investment casting. Modern surface analyses and scanning techniques were used to assess the quality of RCT tools in terms of surface finish and dimensional accuracy. The best surface finish obtained for the cast dies had Ra and Rz respectively equal to 3.23 μm and 11.38 μm. In terms of dimensional accuracy, 82% of cast die points coincided with die Computer Aided Design (CAD) data which is within the typical tolerances of sand cast products. The investigation also showed that mould coating contributed slightly to the improvement of the cast tool surface finish. Finally this study also found that the additive manufacturing of the sand mould was the chief factor responsible for the loss of dimensional accuracy. Because of the above, it was concluded that light machining will always be required to improve the surface finish and the dimensional accuracy of cast tools. Durability was the last characteristic of RCT tools to be assessed. This property was empirically inferred from the mechanical properties and metallographic analysis of castings. Merit of durability figures of 0.048 to 0.152 were obtained for the cast tools. It was found that tools obtained from Direct Croning (DC) moulds have merit of durability figures three times higher than the tools produced from Z-Cast moulds thus a better resistance to abrasion wear of the former tools compared to the latter.
20

Effect Of Mould Filling On Evolution Of Mushy Zone And Macrosegregation During Solidification

Pathak, Nitin 02 1900 (has links)
The primary focus of the present work is to model the entire casting process from filling stage to complete solidification. The model takes into consideration any phase change taking place during the filling process. An implicit volume of fluid (VOF) based algorithm has been employed for simulating free surface flows during the filling process and the model for solidification is based on a fixed-grid enthalpy-based control volume approach. Solidification modelling is coupled with VOF through User Defined Functions (UDF) developed in commercial fluid dynamics (CFD) code FLUENT 6.3.26. The developed model is applied for the simultaneous filling and solidification of pure metals and binary alloy systems to study the effects of filling process on the solidification characteristics, evolution of mushy zone and the final macrosegregation pattern in the casting. The numerical results of the present analysis are compared with the conventional analysis assuming the initial conditions to be a completely filled mould cavity with uniform temperature, solute concentration and quiescent melt inside the cavity. The effects of process parameters, namely the degree of superheat, cooling temperature and filling velocity etc. are also investigated. Results show significant differences on the evolution of mushy zone and macrosegregation between the present analysis and the conventional analysis. The application of present model to simulate three dimensional sand casting is also demonstrated. The three dimensional competetive effect of filling generated residual flow and the buoyancy-induced convective flow pattern cause significant difference in macrosegregation pattern in casting.

Page generated in 0.0656 seconds