• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural integrity of carbon fibre/aluminium foam sandwich composites

Idris, Maizlinda Izwana, Materials Science & Engineering, Faculty of Science, UNSW January 2010 (has links)
This thesis focuses on closed-cell aluminium foams (ALPORAS and ALULIGHT) and on sandwich panels comprising these foams laminated with 2/2 twill carbon fibre (MTM56/0300) skins. The thesis experimentally and analytically investigates the response of foam-only panels (ALPORAS) to indentation with various indenter sizes and shapes; and also studies the behaviour of sandwich panels to contact damage caused quasi-statically or by impact. Quasi??static uniaxial compression testing is used to determine the mechanical properties of the foams (ALPORAS and ALULIGHT). It is revealed that the plastic collapse strength (σ* pl) obtained from the stress??strain curves is lower than the values predicted by the Gibson-Ashby theoretical model. This phenomenon is explained by the fact that the aluminium foams tested are imperfect, non-homogeneous and non-isotropic, and show a distinct cell elongation. Whereas, the Gibson-Ashby theoretical model was based on the finite element method applied to the response of a unit tetrakaidecahedral closed cell having flat faces. The experimental work shows that the deformation of the foam-only panels to indentation is caused by progressive crushing of the cell bands and by shearing and tearing of the cell walls. This thesis presents new analytical models for the response of the foam-only panels and estimates the applied deformation load in all types of indentation. By fitting the experimental load-displacement curves, the shear strength (τ* pl) and the tear energy (γ) are deduced. Compared to the literature, more consistent results are obtained for the shear strength (τ * pl) and the tear energy (γ) from all types of indentation. It is also suggested to determine (τ * pl) and (γ) through indentations with long punches (FEP and LCP), instead of hemi-spherical or cylindrical indenters, because indentation on enclosed areas shows some indenter size dependence. It is concluded that thinner panels are not suitable for the determination of the tear energy (γ) since the densification of the foam is achieved before the tear resistance is fully engaged. Another objective of this thesis is to study the response of sandwich panels comprising a closed??cell aluminium foam core and laminated with carbon fibre skin to quasi-static and impact local damage. Special attention is paid to the residual (remnant) strength in bending of the already indented sandwich panels (quasi-statically or by impact) up to the failure point. The remnant strength in bending is determined by carrying out four point bending strength tests. The local damage is located on either the compressive or on the tensile side of the sandwich panels. Thus, the capacity of the panels to resist transverse loads after they have been locally damaged at contact is investigated. The contact damage on the sandwich panels is experimentally simulated using spherical indenters. The quasi-static indentation is carried out at a low constant velocity (0.5mm/min) ?? the induced contact damage is found to be independent on the sample thickness but dependent on the indenter diameter. On the contrary, the impact test indicates velocity-dependence of the failure mode of the sandwich panel (i.e. skin breakage or punch through) which is found from the load-displacement curves. The results reveal that there is a correlation between the area of the contact damage and the remnant strength, and that the use of metal foam cores leads to high contact damage resilience of composite structures.
2

Structural integrity of carbon fibre/aluminium foam sandwich composites

Idris, Maizlinda Izwana, Materials Science & Engineering, Faculty of Science, UNSW January 2010 (has links)
This thesis focuses on closed-cell aluminium foams (ALPORAS and ALULIGHT) and on sandwich panels comprising these foams laminated with 2/2 twill carbon fibre (MTM56/0300) skins. The thesis experimentally and analytically investigates the response of foam-only panels (ALPORAS) to indentation with various indenter sizes and shapes; and also studies the behaviour of sandwich panels to contact damage caused quasi-statically or by impact. Quasi??static uniaxial compression testing is used to determine the mechanical properties of the foams (ALPORAS and ALULIGHT). It is revealed that the plastic collapse strength (σ* pl) obtained from the stress??strain curves is lower than the values predicted by the Gibson-Ashby theoretical model. This phenomenon is explained by the fact that the aluminium foams tested are imperfect, non-homogeneous and non-isotropic, and show a distinct cell elongation. Whereas, the Gibson-Ashby theoretical model was based on the finite element method applied to the response of a unit tetrakaidecahedral closed cell having flat faces. The experimental work shows that the deformation of the foam-only panels to indentation is caused by progressive crushing of the cell bands and by shearing and tearing of the cell walls. This thesis presents new analytical models for the response of the foam-only panels and estimates the applied deformation load in all types of indentation. By fitting the experimental load-displacement curves, the shear strength (τ* pl) and the tear energy (γ) are deduced. Compared to the literature, more consistent results are obtained for the shear strength (τ * pl) and the tear energy (γ) from all types of indentation. It is also suggested to determine (τ * pl) and (γ) through indentations with long punches (FEP and LCP), instead of hemi-spherical or cylindrical indenters, because indentation on enclosed areas shows some indenter size dependence. It is concluded that thinner panels are not suitable for the determination of the tear energy (γ) since the densification of the foam is achieved before the tear resistance is fully engaged. Another objective of this thesis is to study the response of sandwich panels comprising a closed??cell aluminium foam core and laminated with carbon fibre skin to quasi-static and impact local damage. Special attention is paid to the residual (remnant) strength in bending of the already indented sandwich panels (quasi-statically or by impact) up to the failure point. The remnant strength in bending is determined by carrying out four point bending strength tests. The local damage is located on either the compressive or on the tensile side of the sandwich panels. Thus, the capacity of the panels to resist transverse loads after they have been locally damaged at contact is investigated. The contact damage on the sandwich panels is experimentally simulated using spherical indenters. The quasi-static indentation is carried out at a low constant velocity (0.5mm/min) ?? the induced contact damage is found to be independent on the sample thickness but dependent on the indenter diameter. On the contrary, the impact test indicates velocity-dependence of the failure mode of the sandwich panel (i.e. skin breakage or punch through) which is found from the load-displacement curves. The results reveal that there is a correlation between the area of the contact damage and the remnant strength, and that the use of metal foam cores leads to high contact damage resilience of composite structures.
3

The extended high-order sandwich panel theory

Phan, Catherine Ninh 17 January 2012 (has links)
A new high order theory, referred to as the Extended High-Order Sandwich Panel Theory (EHSAPT), was formulated for orthotropic sandwich beams/wide panels with a general layout. This new theory accounts for the axial, transverse normal, and shear rigidity of the core. Validation of the present theory was performed for several structural analysis problems including: static loading, static instability (global buckling and wrinkling), free vibrations (natural frequencies), and dynamic loading (blast and impact). The accuracy of the theory was assessed by comparison with elasticity solutions and with experiment. It is shown that this new theory has superior accuracy over other available computational models, especially for sandwich beams/wide panel configurations with stiffer cores.
4

Mechanical behavior of tubular composite structures

Zhang, Chao 30 July 2021 (has links)
No description available.
5

Assessing the In-plane Shear Failure of GFRP Laminates and Sandwich Structures

Oluwabusi, Oludare E. January 2018 (has links)
No description available.
6

Analysis of Thin Skinned Cylindrical Sandwich Structures with Weak Orthotropic Core Under Patch Loading

El Mir, Charles 29 May 2013 (has links)
No description available.
7

The Fracture Behavior of Stitched Sandwich Composites

Drake, Daniel Adam 30 April 2021 (has links) (PDF)
The purpose of this research is to evaluate the influence of through-the-thickness reinforcements on the fracture behavior of stitched sandwich composites and to develop predictive methodologies to aid in simulating their damage-tolerant capability. Sandwich composites are widely used for their high stiffness-to-weight ratio due to their unique material architecture, which is composed of two rigid, outer facesheets that are bonded to a light-weight internal core. However, sandwich composites are limited by their low interlaminar strengths and can develop core-to-facesheet separation when subjected to low out-of-plane loads. In this study, sandwich composites were manufactured with through-the-thickness reinforcements, or stitches, to act as crack-growth inhibitors and to improve interlaminar properties. Stitch processing parameters, such as the number of stitches per unit area (stitch density) and stitch diameter (linear thread density), have considerable influence on the in-plane and out-of-plane behavior of composite structures. A design of experiments (DoE) approach is used to investigate stitch processing parameters and their interaction on the fracture behavior of stitched sandwich composites. Single cantilevered beam (SCB) tests are performed to estimate the required energy to propagate crack growth, or Mode I fracture energy, during the separation of the facesheet from the core. Additionally, embedded optical fibers within the SCB test articles are used to determine the internal crack front variation. During testing, unique fracture morphologies are obtained and show dependency on stitch processing parameters. Furthermore, embedded optical fibers indicate that the internal crack front is approximately 10% greater than visual edge measurements, which is primarily attributed to Poisson’s effect. The DoE approach is then used to develop a statistically informed response surface model (RSM) to optimize stitch processing parameters based on a maximum predicted fracture energy. Novel analytical formulations are developed for estimating the mode I fracture energy using the J-integral approach. The DoE approach is then used to inform and validate finite element models that simulate the facesheet-to-core separation using a discrete cohesive zone modeling approach. The predicted load and crack growth response show good agreement to experimental measurements and highlights the capability of stitching to arrest delamination in stitched sandwich composites.
8

Development of Probabilistic Models for Long Term Reliability of Sandwich Composites in Saline Freeze/Thaw Environment for Civil Engineering Applications

Emami, Sadra January 2017 (has links)
No description available.
9

The Effectiveness of Damage Arrestment Devices in Delaying Fastener-Hole Interaction Failures in Carbon Fiber Polyurethane Foam Composite Sandwich Panels Subjected to Static and Dynamic Loading Under Increased Temperatures

Surano, Dominic E 01 December 2010 (has links) (PDF)
A study was conducted to investigate simple, cost-effective manufacturing techniques to delay skin-core delamination, micro-buckling and bearing stress failures resulting from fastener-hole interactions. Composite sandwich panels, with and without damage arrestment devices (DADs), were subjected to monotonic compression at a rate of 5mm per second, and compression-compression fatigue at 50% yield at an amplitude of 65%, under temperatures of 75, 100, 125, 150, 175, and 200 °F. The sandwiches tested were composed of two-layer cross-weave carbon fiber facesheets, a polyurethane foam core, and an epoxy film adhesive to join the two materials. The most successful method to delay the aforementioned failures involved milling rectangular slots in the foam core perpendicular to the holes and adding three additional layers of carbon fiber cross-weave. For the monotonic cases, the ultimate load increases were 97, 87, 100, 131, 96, and 119% for each of the respective temperatures listed above with a negligible weight increase. For the fatigue cases, the number of cycles for each test case was nearly identical. This still represents a large improvement because the yield used in the loading condition for the specimens with DADs was 97% greater than the specimens without DADs. The experimental results were compared with a finite element model (FEM) built in Abaqus/CAE. The numeric and experimental results showed a strong correlation. All test specimens were manufactured and tested in the California Polytechnic State University Aerospace/Composites Laboratory.

Page generated in 0.0588 seconds