• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 4
  • 1
  • Tagged with
  • 24
  • 24
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A Method to Derive an Aerosol Composition from Downward Solar Spectral Fluxes at the Surface

Rao, Roshan R January 2016 (has links) (PDF)
Aerosol properties are highly variable in space and time which makes the aerosol study more complex. The sources and production mechanism of aerosols decide the properties of the aerosols. Aerosol radiative forcing is defined as the perturbation to the radiative fluxes of the earth atmosphere system caused by the aerosols. High uncertainty in the aerosol radiative forcing values exists today due to the lack of the exact chemical composition data of the aerosols everywhere. There are previous studies which have introduced methods to estimate ‘optical equivalent’ composition of aerosols using spectral aerosol optical depth measurements at the surface. The impact of aerosols on the solar radiative flux depends on its size distribution and composition. Hence, measurements of downward solar spectral fluxes at the surface can be used to infer ‘optically equivalent’ composition of aerosols. Measurements of downward solar spectral flux at Bangalore were made on clear days using a spectroradiometer. This data has been used to infer the aerosol composition following an iterative method with the help of the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). Aerosols have been classified as water soluble, black carbon and three types of dust. Influence of the different aerosol types on spectral down welling irradiance at the surface have been simulated using Optical Properties of Aerosols and Clouds (OPAC) and SBDART models. The strong spectral dependence influence of water soluble aerosols and the dust aerosols on the spectral irradiance is shown. Aerosol composition was inferred following least square error minimization principle. This method can be used to estimate near-surface aerosol concentration if the vertical profile of aerosols is known a priori. This method also enables derivation of spectral single scattering albedo. The aerosol spectral radiative forcing has been estimated using downward spectral flux at the surface and compared with modeled fluxes. The contribution to the total forcing by the wavelength band 360 – 528 nm is around 60% of the total forcing. The wavelength band of 453-518 nm contributes maximum to the total forcing and it is seen that the shape of the spectral forcing is a major function of shape of the incoming solar spectrum. Aerosol spectral radiative forcing from observations of radiative fluxes agreed with modeled values when derived aerosol chemical composition was used as input. This study demonstrates that spectral flux measurements at the surface are useful to infer aerosol composition (which is optically equivalent) when and where the conventional chemical analysis is unavailable.
22

Embodying Civil Society in Public Space: Re-Envisioning the Public Square of Mansfield, Ohio

WILSCHUTZ, SETH DOUGLAS 14 July 2005 (has links)
No description available.
23

Arqueologia, museologia e conservação: documentação e gerenciamento da coleção proveniente do Sítio Santa Bárbara (Pelotas-RS)

Leal, Ana Paula da Rosa 22 April 2014 (has links)
Submitted by Simone Maisonave (simonemaisonave@hotmail.com) on 2014-09-17T20:08:16Z No. of bitstreams: 2 Ana Paula da Rosa Leal_Dissertacao.pdf: 3399512 bytes, checksum: 3a4f49a03e51c570349d922a5925b684 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-17T20:08:16Z (GMT). No. of bitstreams: 2 Ana Paula da Rosa Leal_Dissertacao.pdf: 3399512 bytes, checksum: 3a4f49a03e51c570349d922a5925b684 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-04-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / A presente pesquisa busca refletir sobre a importância da documentação e do gerenciamento de informações como encadeamentos da musealização de acervos arqueológicos. Para isso travou-se um diálogo entre as áreas de interesse - arqueologia, Museologia e Conservação -, entendendo-as como disciplinas que devem atuar conjuntamente na preservação do patrimônio arqueológico. No Brasil a não interação entre essas áreas, somada à falta de normatização na documentação dessa tipologia de acervo, vem trazendo danos à sua preservação. A preocupação com essa temática resultou neste estudo de caso, que tem como foco principal a análise da coleção do sítio Santa Bárbara (Pelotas-RS), escavada e salvaguardada pela equipe do Laboratório Multidisciplinar de Investigação Arqueológica (Lâmina) da Universidade Federal de Pelotas (UFPEL). Com isso, buscou-se observar as ações das três áreas durante essa empreitada, acompanhando-as por meio das suas documentações e de seus mecanismos de gerenciamento da informação, visando propor como produto, um modelo de documentação e gerenciamento aplicável à referida coleção. / This research seeks to reflect on the importance of documentation and management information as linkage of archaeological collection’s muzealization. This was initiated with a dialogue between the areas of interest - archeology, museology and conservation - understanding them as disciplines that must work together for the preservation of the archaeological heritage. In Brazil, no interaction between these areas, coupled with the lack of standardization in the documentation of this type of library, is bringing harm to their preservation. Concern over this issue resulted in this case study, which focuses mainly on the analysis of the collection site Santa Barbara (Pelotas, Rio Grande do Sul, Brazil), excavated and protected by the Lâmina Laboratory (Multidisciplinary Laboratory of Archaeological Research) University of Pelotas’s team. Thus, we attempted to observe the actions of the three areas during this endeavor, following them through their documentation and their mechanisms of information management, aiming to propose as a product, a model of documentation and management applicable to that collection.
24

The Retrieval of Aerosols above Clouds and their Radiative Impact in Tropical Oceans

Eswaran, Kruthika January 2016 (has links) (PDF)
Aerosols affect the global radiation budget which plays an important role in determining the state of the Earth's climate. The heterogeneous distribution of aerosols and the variety in their properties results in high uncertainty in the understanding of aerosols. Aerosols affect the radiation by scattering and absorption (direct effect) or by modifying the cloud properties which in turn affects the radiation (indirect effect). The current work focuses only on the direct radiative effect of aerosols. The change in the top-of-atmosphere (TOA) reflected flux due to the perturbation of aerosols and their properties is called direct aerosol radiative forcing (ARFTOA). Estimation of ARFTOA using aerosol properties is done by solving the radiative transfer equation using a radiative transfer model. However, before using the radiative transfer model, it has to be validated with observations for consistency. This is done to check if the model is able to replicate values close to actual observations. The current work uses the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The output radiative fluxes from SBDART are validated by comparing with the Clouds and the Earth's Radiant Energy System (CERES) satellite data. Under clear-skies SBDART agreed with observed fluxes at TOA well within the error limits of satellite observations. In the shortwave solar spectrum (0.25-4 µm) radiation is affected by change in various aerosol properties and also by water vapour and other gas molecules. To study the effect of each of these molecules separately on the aerosol forcing at TOA, SBDART is used. ARFTOA is found to depend on the aerosol loading (aerosol optical depth – AOD), aerosol type (SSA) and the angular distribution of scattered radiation (asymmetry parameter). The role of water vapour relative to the aerosol layer height was also investigated and for different aerosol types and aerosol layer heights, it was found that water vapour can induce a change of ~4 Wm-2 in TOA flux. The relative importance of aerosol scattering versus absorption is evaluated through a parameter called single scattering albedo (SSA) which can be estimated from satellites. SSA defined as the ratio of scattering efficiency to total extinction efficiency, depends on the aerosol composition and wavelength. Aerosols with SSA close to 1 (sea-salt, sulphates) scatter the radiation and cool the atmosphere. Aerosols with SSA < 0.9 (black carbon, dust) absorb radiation and warm the atmosphere. Over high reflective surfaces a small change in SSA can change forcing from negative (cooling) to positive (warming). This makes SSA one of the most important and uncertain aerosol parameters. Currently, the SSA retrievals from the Ozone Monitoring Instrument (OMI) are highly sensitive to sub-pixel cloud contamination and change in aerosol height. Using the sensitivity of OMI to aerosol absorption and the superior cloud masking technique and accurate AOD retrieval of Moderate Resolution Imaging Spectroradiometer (MODIS), an algorithm to retrieve SSA (OMI-MODIS) was developed. The algorithm was performed over global oceans (60S-60N) from 2008-2012. The difference in SSA estimated by OMI-MODIS and that of OMI depended on the aerosol type and aerosol layer height. Aerosol layer height plays an important role in the UV spectrum due to the dominance of Rayleigh scattering. This was verified using SBDART which otherwise would not have been possible using just satellite observations. Both the algorithms were validated with cruise measurements over Arabian Sea and Bay of Bengal. It was seen that when absorbing aerosols (low SSA values) were present closer to the surface, OMI overestimated the value of SSA. On the other hand OMI-MODIS algorithm, which made no assumption on the aerosol type or height, was better constrained than OMI and hence was closer to the cruise measurement The presence of clouds results in a more complex interaction between aerosols and radiation. Aerosols present above clouds are responsible to most of the direct radiative effect in cloudy regions. The ARFTOA depends not only on the aerosol properties but also on the relative position of aerosols with clouds. When absorbing aerosols are present above clouds, the ARFTOA is highly influenced by the albedo of the underlying surface. Recent studies, over regions influenced by biomass burning aerosol, have shown that it is possible to define a ‘critical cloud fraction’ (CCF) at which the aerosol direct radiative forcing switch from a cooling to a warming effect. Similar analysis was done over BoB (6.5-21.5N; 82.5-97.5E) for the years 2008-2011. Aerosol properties were taken from satellite observations. Satellites cannot provide for aerosols present at different heights and hence SBDART was used to calculate the forcing due to aerosols present only above clouds. Unlike previous studies which reported a single value of CCF, over BoB it was found that CCF varied from 0.28 to 0.13 from post-monsoon to winter as a result of shift from less absorbing to moderately absorbing aerosol. This implies that in winter, the absorbing aerosols present above clouds cause warming of the atmosphere even at low cloud fractions leading to lower CCF. The use of multiple satellites in improving the retrieval of SSA has been presented in this thesis. The effect of aerosols present above clouds on the radiative forcing at TOA is shown to be different between Bay of Bengal and Atlantic Ocean. This was due to the change in SSA of aerosols during different seasons. The effect of aerosol height, aerosol type and water vapour on the TOA flux estimation is also studied using a radiative transfer model.

Page generated in 0.0592 seconds