• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Immobilized Ru(II) catalysts for transfer hydrogenation and oxidative alkene cleavage reactions

Kotze, Hendrik de Vries 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The synthesis of a range of siloxane functionalized Ru(arene)Cl(N,N) complexes allowing for the synthesis of novel MCM-41 and SBA-15 immobilized ruthenium(II) catalysts, is described in this thesis. Two distinctly different approaches were envisaged to achieve successful heterogenization of these siloxane functionalized complexes. Condensation of the siloxane functionalized complexes, C2.4-C2.6 (siloxane tether attached to imine nitrogen) and C3.5-C3.7 (siloxane tether via the arene ring), with the surface silanols of the synthesized silica support materials MCM-41 and SBA-15, afforded immobilized catalysts IC4.1-IC4.6 (siloxane tether attached to imine nitrogen) and IC4.7-IC4.12 (siloxane tether via the arene ring). Model and siloxane functionalized complexes C2.1-C2.6 were prepared by the reaction of diimine Schiff base ligands L2.1-L2.6 with the [Ru(p-cymene)2Cl2]2 dimer. A second, novel, approach involved the introduction of the siloxane tether on the arene ligand of the complex. Cationic arene functionalized Ru(arene)Cl(N,N) complexes, C3.1-C3.4, were prepared with varying N,N ligands including bipyridine and a range of diimine ligands, with either propyl or diisopropyl(phenyl) substituents at the imine nitrogen (greater steric bulk around the metal center). The reaction of these propanol functionalized complexes with 3-(triethoxysilyl)propyl isocyanate, afforded urethane linked siloxane functionalized complexes C3.5-C3.8, where the siloxane tether is attached to the arene ring of the complex. The complexes were fully characterized by FT-IR spectroscopy, NMR (1H and 13C) spectroscopy, ESI-MS analysis and microanalysis. Suitable crystals for the alcohol functionalized complex C3.1 were obtained and the resultant orange crystals were analyzed by single crystal XRD. The heterogenized catalysts, IC4.1-IC4.12, were characterized by smallangle powder X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), thermal gravimetric analysis (TGA), inductively coupled plasma optical emission spectroscopy (ICP-OES) and nitrogen adsorption/desorption (BET) surface analysis to name but a few. ICP-OES allowed for direct comparison of the model and immobilized systems during catalysis ensuring that the ruthenium loadings were kept constant. The application of the model complexes C2.1-C2.3 and C3.1-C3.3, as well as their immobilized counterparts, IC4.1-IC4.12, as catalyst precursors in the oxidative cleavage of alkenes (1-octene and styrene), were investigated. The proposed active species for the cleavage reactions was confirmed to be RuO4 (UV-Vis spectroscopy). In general it was observed that at lower conversions, aldehyde was formed as the major product. Increased reaction times resulted in the conversion of the formed aldehyde to the corresponding carboxylic acid. For the oxidative cleavage of 1-octene using the systems with the siloxane tether attached to the imine nitrogen, the immobilized systems outperformed the model systems in all regards. Higher conversions and selectivities of 1-octene towards heptaldehyde were obtained when using immobilized catalysts IC4.1-IC4.6, as compared to their non-immobilized model counterparts (C2.1-C2.3) at similar times. It was found that the immobilized catalysts could be used at ruthenium loadings as low as 0.05 mol %, compared to the model systems where 0.5 mol % ruthenium was required to give favorable results. Complete conversion of 1-octene could be achieved at almost half the time needed when using the model systems as catalyst precursors. The activity of the model systems seems to increase with the increase in steric bulk around the metal center. These model and immobilized systems were also found to cleave styrene affording benzaldehyde in almost quantitative yield in some case (shorter reaction times). The systems, with the siloxane tether via the arene ring, were found to be less active for the cleavage of 1-octene when compared to the above mentioned systems (siloxane tether attached to the imine nitrogen). The immobilized systems IC4.7-IC4.12 performed well compared to their model counterparts, but could not achieve the same conversions at the shorter reaction times as were the case for IC4.1-IC4.6. This lower activity was ascribed to the decreased stability of these systems in solution compared to the above mentioned systems with the tether attached to the imine nitrogen. This was confirmed by monitoring the conversion of the complex (catalyst precursor) to the active species in the absence of substrate (monitored by UV-Vis spectroscopy). It was observed that model complex C3.1 could not be detected in solution after 1 hour, compared to complex C2.2 which was detected in solution even after 24 hours. Experiments were carried out where MCM-41 was added to a solution of model complex C2.2 under typical cleavage reaction conditions. A dramatic increase in the conversion was achieved when compared to a reaction in the absence of MCM-41. An investigation into the effect of the support material on the formation of the expected active species was carried out using UV-Vis spectroscopy. The presence of the active species, RuO4, could be observed at shorter reaction times in the presence of MCM-41. This suggested that the silica support facilitates the formation of the active species from the complex during the reaction, therefore resulting in an increased activity. It was also observed that RuO4 is present in solution in reactions where the immobilized catalyst systems are used after very short reaction times, compared to the prolonged times required for this to occur as is the case for the model systems. Model and immobilized catalysts, C2.1-C2.3 and IC4.1-IC4.6, were also applied as catalysts for the transfer hydrogenation of various ketones. The immobilized systems could be recovered and reused for three consecutive runs before the catalysts became inactive (transfer hydrogenation of acetophenone). Moderate to good conversion were obtained using the immobilized systems, but were found to be less active their model counterparts C2.1-C2.3. / AFRIKAANSE OPSOMMING: Die sintese van `n reeks siloksaan gefunksioneerde Ru(areen)Cl(N,N) komplekse, wat die sintese van nuwe MCM-41 en SBA-15 geimmobiliseerede rutenium(II) katalisatore toelaat, word in hierdie tesis beskryf. Twee ooglopend verskillende metodes is voorgestel om die suksesvolle immobilisering van die siloksaan gefunksioneerde komplekse te bereik. Die kondensasie van die siloksaan gefunksioneerde komplekse, C2.4-C2.6 (siloksaan ketting geheg aan die imien stikstof) en C3.5-C3.7 (siloksaan ketting geheg aan die areen ligand), met die oppervlak silanol groepe van die silika materiale MCM-41 en SBA-15, laat die sintese van geimmobiliseerde katalisatore IC4.1-IC4.6 (siloksaan ketting geheg aan die imien stikstof) en IC4.7-IC4.12 (siloksaan ketting geheg aan die areen ligand) toe. Model en siloksaan gefunksioneerde komplekse C2.6-C2.6 is berei deur die reaksie tussen Schiff basis ligande, L2.1-L2.6, en die [Ru(p-simeen)2Cl2]2 dimeer. `n Tweede, nuwe benadering wat die sintese van komplekse met die siloksaan ketting geheg aan die areen ligand behels, is ook gevolg. Kationiese areen gefunksioneerde Ru(areen)Cl(N,N) komplekse, C3.1-C3.4, is berei deur die N,N ligande rondom die metaal sentrum te wissel vanaf bipiridien tot `n reeks diimien ligande met propiel of diisopropielfeniel substituente by die imien stikstof. Hierdie propanol gefunksioneerde komplekse is met 3-(triëtoksiesiliel)propiel-isosianaat gereageer om sodoende die uretaan gekoppelde siloksaan gefunksioneerde komplekse C3.5-C3.8 op te lewer. Al die komplekse is ten volle gekaraktariseer deur van FT-IR spektroskopie, KMR (1H and 13C) spektroskopie, ESI-MS analise en mikroanalise gebruik te maak. In die geval van model kompleks C3.1, is `n kristalstruktuurbepaling ook uitgevoer. Die heterogene katalisatore, IC4.1- IC4.12, is gekaraktariseer deur poeier X-straaldiffraksie, skandeer- en transmissieelektronmikroskopie, termogravimetriese analise (TGA), induktief gekoppelde plasma optiese emissie spektroskopie (IKP-OES) en BET oppervlak analises, om net `n paar te noem. IKP-OES het ons toegelaat om `n direkte vergelyking te tref tussen die model en geimmobiliseerde sisteme tydens die katalise reaksies. Model komplekse C2.1-C2.3 en C3.1-C3.3, sowel as hul geimmobiliseerde eweknieë IC4.1- IC4.12, is vir die oksidatiewe splyting van alkene (1-okteen en stireen) getoets. Die voorgestelde aktiewe spesie wat tydens hierdie reaksie gevorm word, RuO4, is bevestig deur van UV-Vis spektroskopie gebruik te maak. Oor die algemeen is dit gevind dat aldehied oorheersend gevorm word by laer omsetting. Wanneer die reaksietyd verleng is, is daar gevind dat die aldehied na die ooreenstemmende karboksielsuur omgeskakel is. Wanneer die geimmobiliseerde katalisatore gebruik is tydens die oksidatiewe splitsing van 1-okteen, het die sisteme, met die ketting geheg aan die imien stikstof, deurgangs beter as die model sisteme gevaar. Hoër omskakelings van 1-okteen en hoë selektiwiteite vir heptaldehied is behaal wanneer die geimobiliseerded katalisatore IC4.1-IC4.6 met die nie-geimmobiliseerde model sisteme (C2.1- C2.3) vergelyk is by dieselfde reaksietye. Die geimobiliseerde sisteme kon by rutenium beladings van so laag as 0.05 mol % gebruik word. Dit is in teenstelling met die model sisteme waar 0.5 mol % rutenium nodig was om die reaksie suksesvol te laat plaasvind. Die totale omskakeling van 1-okteen is bereik in die helfte van die tyd wat nodig was wanneer die model sisteme gebruik is. Dit is gevind dat die aktiwiteit van die model sisteme toeneem met `n toename in die steriese grootte van die ligand rondom die metaal. Beide die model en geimmobilseerde sisteme kon ook gebruik word vir die oksidatiewe splyting van stireen. Bensaldehied kon in kwantitiewe opbrengs gevorm word in sommige gevalle. `n Laer aktiwiteit vir die oksidatiewe splyting van 1-okteen is vir die sisteme waar die siloksaan ketting aan die areen ligand geheg is, waargeneem. Hoewel die geimmobiliseerde sisteme IC4.7-IC4.12 beter as hul model eweknieë gevaar het, kon die aktiwiteite wat met IC4.1-IC4.6 bereik is nie geewenaar word nie. Hierdie laer aktiwiteit is toegeskryf aan die verlaagde stabiliteit van dié sisteme in oplossing in vergelyking met IC4.1-IC4.6 (ketting geheg aan die imine stikstof). Die stabiliteit van beide sisteme is getoets deur die omskakeling van die model komplekse (C2.2 en C3.1; katalise voorgangers) na die aktiewe spesie te monitor (UV-Vis spektroskopie). Na 1 uur kon die model kompleks C3.1 nie meer in die oplossing waargeneem word nie. In teenstelling kon model kompleks C2.2 nog selfs na 24 uur in die oplossing bespeur word. Om die rol van die silika materiale tydens die reaksie te ondersoek, is `n eksperiment uitgevoer waar MCM-41 by `n oplossing van kompleks C2.2 gevoeg is. `n Toename in die omskakeling van 1-okteen is waargeneem in vergelyking met `n reaksie waar geen silika teenwoordig was nie. UV-Vis spektroskopie is gebruik om die invloed van die silika op die vorming van die aktiewe spesie te ondersoek. In eksperimente waar MCM-41 teenwoordig was, kon die aktiewe spesie, RuO4, by baie korter reaksietye waargeneem word. Dit wil blyk of die silika materiaal die vorming van die aktiewe spesie vanaf die kompleks aanhelp en sodoende `n toename in die spoed van die reaksie bewerkstellig. RuO4 kon ook by baie korter reaksietye waargeneem word wanneer die geimmobiliseerde sisteme gebruik is. Beide model en geimmobiliseerde sisteme, C2.1-C2.3 en IC4.1-IC4.6, is getoets vir die oordrag hidrogenering van verskilende ketone. Dit was moontlik om die geimmobiliseerde sisteme drie keer te herwin en vir daaropvolgende reaksies te gebruik. Vir die geimmobiliseerde sisteme kon egter slegs gemiddelde omskakelings verkryg word en het swakker gevaar as hul model ekwivalente sisteme, C2.1-C2.3.

Page generated in 0.0683 seconds